IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Training Cost-Sensitive Neural Networks with
Methods Addressing the Class Imbalance Problem
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Abstract—This paper studies empirically the effect ofsampling ~ Learning, [29]), the inclusion of costs into learning has been
and threshold-movingn training cost-sensitive neural networks. regarded as one of the most relevant topics of future machine
Both over-sampling and under-sampling are considered. These |o4ning research. During the past years, many cost-sensitive
techniqgues modify the distribution of the training tha such learning methods have been developed [6] [11] [14] [23] [31]
that the costs of the examples are conveyed explicitly by the 9 P :
appearances of the examples. Threshold-moving tries to move the However, although there are much research efforts devoted to
output threshold toward inexpensive classes such that examplesmaking decision trees cost-sensitive [5] [17] [24] [33] [35]
with higher costs become harder to be misclassified. Moreover, [37], only a few studies discuss cost-sensitive neural networks
hard-ensembleand soft-ensemble, i.e. the combination of above[lg] [21], while usually it is not feasible to apply cost-sensitive

techniques via hard or soft voting schemes, are also tested.d . t | . thods t | networks directl
Twenty-one UCI data sets with three types of cost matrices and a ecision tree fearning metods to neural networks directly.

real-world cost-sensitive data set are used in the empirical study. FOr example, the instance-weighting method [33] requires the
The results suggest that cost-sensitive learning with multi-class learning algorithm accept weighted-examples, which is not a

tasks is more difficult than with two-class tasks, and a higher problem for C4.5 decision trees but is difficult for common
degree of class imbalance may increase the difficulty. It also feedforward neural networks.

reveals that almost all the techniques are effective on two-class R tiv. thel imbal bl has b ized
tasks, while most are ineffective and even may cause negative ecently, (neclass imbalanceroblem has been recognize

effect on multi-class tasks. Overall, threshold-moving and soft- @S @ crucial problem in machine learning and data mining
ensemble are relatively good choices in training cost-sensitive because such a problem is encountered in a large number
neural networks. The empirical study also suggests that some of domains and in certain cases it causes seriously negative
methods that have been believed to be effective in addressing thegtfact on the performance of learning methods that assume
class imbalance problem may in fact only be effective on learning S
with imbalanced two-class data sets. a balanced_dlstrlbutlo_n of classes [15] [25]. Much work has
been done in addressing the class imbalance problem [38]. In
particular, it has been indicated that learning from imbalanced
data sets and learning when costs are unequal and unknown
can be handled in a similar manner [22], and cost-sensitive
learning is a good solution to the class imbalance problem
. INTRODUCTION [38]
N classical machine learning or data mining settings, the This paper studies methods that have been shown to be
classifiers usually try to minimize the number of errors theyffective in addressing the class imbalance problem, applied
will make in dealing with new data. Such a setting is valid onlyo cost-sensitive neural networks. On one hand, such a study
when the costs of different errors are equal. Unfortunately, #ould help identify methods that are effective in training cost-
many real-world applications the costs of different errors agensitive neural networks; on the other hand, it may give an
often unequal. For example, in medical diagnosis, the costaiswer to the question: considering that cost-sensitive learning
erroneously diagnosing a patient to be healthy may be muglethods are useful in learning with imbalanced data sets, are
bigger than that of mistakenly diagnosing a healthy person [aarning methods for the class imbalance problem also helpful
being sick, because the former kind of error may result in thy cost-sensitive learning?
loss of a life. In particular, this paper studies empirically the effect
In fact, cost-sensitive learning has already attracted much aéf- over-sampling under-samplingand threshold-movingin
tention from the machine learning and data mining communiaining cost-sensitive neural networkidard-ensembleand
ties. As it has been stated in the Technological Roadmap of #sft-ensemble, i.e. the combination of over-sampling, under-
MLnetll project (European Network of Excellence in Machingampling and threshold-moving via hard or soft voting
. . . . . schemes, are also tested. It is noteworthy that none of these
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TABLE |

difficulty. The empirical study also reveals that almost all the
THE OVER-SAMPLING ALGORITHM

techniques are effective on two-class tasks, while most are

ineffective on multi-class tasks. Concretedgmplingmethods  Training phase:

are only helpful on two-class tasks, while often cause negativel.- LetS be the original training set5). be its subset comprising all

effect on data sets with big number of classes; threshold-, tgjtka'“tr tﬁgaifi;ﬁiﬁnt‘:ﬁﬁiéts gggg,ﬁs -

moving is excellent on two-class tasks, which is capable of3.  For classes withN; > Ny) (k € {1..C}), resample(N; — N},)

performing cost-sensitive learning even on seriously imbal- ~ number of examples frons}; and put them intd5™.

anced two-class data sets, and effective on some multi-clasé . T:’"n f’" neural network frons'™.

tasks; soft-en_semble is effective On both tWQ_CIaSS. and mum'lt.as Fé%(fnseer.ate real-value outputs with the trained neural network.

class tasks given that the data set is not seriously imbalanced. Return the class with the biggest output.

which is much better than hard-ensemble. Overall, the findings

of the empirical study suggest that threshold-moving and soft-

ensemble are relatively good choices in training cost-sensitive

neural networks. Moreover, the empirical study suggests ti¥re by random sampling with replacement. The presented

cost-sensitive learning and learning with imbalanced data s€¥er-sampling algorithm is summarized in Table I.

might have different characteristics, or some methods suctiNote that over-sampling is a popular method in addressing

as sampling, which have been believed to be effective the class imbalance problem, which resamples the small class

addressing the class imbalance problem, may in fact only watil it contains as many examples as the other class. Although

effective on learning with imbalanced two-class data sets. Some studies have shown that over-sampling is effective in
The rest of this paper is organized as follows. Section learning with imbalanced data sets [15] [16] [22], it should be

presents the learning methods studied in this paper. Sectised that over-sampling usually increases the training time

3 reports on the empirical study. Section 4 discusses soffd may lead to overfitting since it involves making exact
observations. Section 5 concludes. copies of examples [8] [13]. Moreover, there are also some

studies that have suggested that over-sampling is ineffective
on the class imbalance problem [13].
Besides the algorithm shown in Table |, this paper also
Suppose there ar€' classes, and thé-th class hasN; studies a recent variant of over-sampling, i.eM8E [8].
number of training examples. Le&tost[i,c] (i,c € {1..C'’}) This algorithm resamples the small class through taking each
denote the cost of misclassifying an example ofittieclass to small class example and introducing synthetic examples along
thec-th class (Cost[i,} = 0), andCost[i] (i € {1..C}) denote the line segments joining its small class nearest neighbors.
the cost of thei-th class. Moreover, suppose the classes aFer example, assume the amount of over-sampling needed
ordered such that for thieth class and thg-th class, ifi < j is 200%, then for each small class example, two nearest
then (Costli] < Cost[j]) or (Cost[i] = Cost[j] and N; > neighbors belonging to the same class are identified and one
Nj). Cost[i] is usually derived fromCost[i,c]. There are synthetic example is generated in the direction of each. The
many possible rules for the derivation, among which a populgynthetic example is generated in the following way: take
one isCosti] = i Costli, d [7] [33]. the Qiffere_nce betyveen the attr.ibute vector (examp[e) under
=1 consideration and its nearest neighbor; multiply this difference
by a random number between 0 and 1, and add it to the
A. Over-Sampling attribute vector under consideration. Default parameter settings

Over-sampling changes the training data distribution suglf% sil;/ilp?tiToE n 2:‘eth:S:|?:1 olrri1thtr:]1€c ae r:n Eg'?:llj nzt?r?x{é]The detailed

that the costs of the examples are conveyed by the appearances

of the examples. In other words, this method duplicates
higher-cost training examples until the appearances of differéht Under-Sampling

training examples are proportional to their costs. Like over-sampling, under-sampling also changes the train-

Concretely, thek-th class will haveN;: training examples ing data distribution such that the costs of the examples are

after resampling, which is computed according to Eq. 1.  explicitly conveyed by the appearances of examples. However,

the working style of under-sampling opposites that of over-

= {COSt[k]N J 1) sampling in the way that the former tries to decrease the

Cost[)] number of inexpensive examples while the latter tries to

Here the\-class has the smallest number of training exanficrease the number of expensive examples.

ples to be duplicated, which is identified according to Eq. 2. Concretely, thek-th class will haveN;; training examples
after resampling, which is computed according to Eq. 1. Here

Il. LEARNING METHODS

_Costlil the A-class has the smallest number of training examples to
min Cost|c] arg min Cost|[c] b imi q hich ie id fiod | J ¢
\ = arg min —° c @) e eliminated, which is identified according to Eq. 3.
’ Nj Cost[j]
max Cost[c] Narg max Cost[c]

If N} > N then (N} — N;) number of training examples . c c
L . A = arg max 3)
of the k-th class should be resampled, which is accomplished j N;
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TABLE I

If N < Nj then (N, — N}i) number of training examples
THE UNDER-SAMPLING ALGORITHM

of the k-th class should be eliminated. Here a routine similar
to that used in [18] is employed, which removes redundantraining phase:

examples at first and then removes borderline examples arld Let S be the original training set5), be its subset comprising all
the k-th class examples (& {1..C}).

examples suffering from the class label noise. 2. SetS to 5%, for the k-th class (ke {1..C}):
Redundant examples are the training examples whose part 2a.  Set(S* — Si) to S*. If N < Ny, randomly remove
can be taken over by other training examples. Here they LIV;; /2] number of examples frorfij, and put these removed
. . . . examples intoS*; otherwise remove all the examples from
are identified by the 1-NN rule [9]. In detail, some training Sy and put them intos*.
examples are put int8* at first. Then, for a class to be shrank, 2b. If S, # 0, randomly pick an example in S;, and classify
all its examples outside of* are classified according to 1- it in S* with the 1-NN rule. If the classification is correct,
. « e L . . then removex from Si. This process is repeated until all
NN in S*. If the classification is correct, then the example is the examples inS,, have been examined or the number of
regarded as being redundant. removed examples reachgd’, — N;¥). Merge Sy, into S*.
Borderline examples are the examples close to the bound- 2c.  If there are more thaN,%1 number ofk th class examples in
. . . S*, randomly pick ak-th class examplex and identify its
aries between different classes. They are unreliable because nearest neighbor, say, in 5*. If y andx belong to different
even a small amount of attribute noise can send the example to classes andt is the nearest neighbor gfin S*, then remove
the wrong side of the boundary. The borderline examples and x from 5. This process is repeated until there are exactly
. . N} number ofk-th class examples i§*, or all thek-th class
examples suffering from the class label noise can be detected examples have been examined.
using the concept afomek linkg34]. The idea could be put 2d.  If there are more thaiv;’ number ofk-th class examples in
as follows. Take two examples, i.& and Y, such that each S*, randomly remove some examples until there are exactly

N;: number ofk-th class examples.

belongs to a different class. Létist(x, y) denote the distance 3 140 a keural network frons™ .

between them. Then the paik,y) is called a Tomek link  1ogt phase:

if no examplez exists such thaDist(x,z) < Dist(x,y) 1. Generate real-value outputs with the trained neural network.
or Dist(y,z) < Dist(y,x). Here the distance between two 2- Retur the class with the biggest output.

examples are computed according to Eq. 4, whers the
number of attributes among which the firgtattributes are
binary or nominal.

is largely due to testing on a limited sample, but for under-
sampling there is also variance due to the non-determinism
of the under-sampling process. Since the choice between two
Dist (x1,%2) = ZVDM (x11,X21) + Z |x1; —le\Q classifiers might also depend on the variance, using under-
=1 I=j+1 sampling might be less desirable. However, as Elkan indicated
(4) [14], sampling can be done either randomly or deterministi-
Let N, denote the number of training examples holdingally. While deterministic sampling risks introducing bias, it
value v on attributea, N, . . denote the number of trainingcan reduce variance. Thus, under-sampling via deterministic
examples belonging to classand holding value: ona. Then strategies, such as the one shown in Table Il, can be a baseline
VDM [30] is defined according to Eq. 5, which is employedor comparison.
in Eq. 4 to deal with binary or nominal attributes.

c 2 C. Threshold-Moving
Na,u,c Na,v,c
VDM (u,v) = Z Now  Nio ®) Threshold-moving moves the output threshold toward inex-
e=1 ’ ’ pensive classes such that examples with higher costs become
The presented under-sampling algorithm is summarized @rder to be misclassified. This method uses the original
Table 1. training set to train a neural network, and the cost-sensitivity

is introduced in the test phase.

Note that under-sampling is also a popular method in Concretely, leO; (i € {1..C}) denote the real-value output

addressing the class imbalance problem, which eliminatgsdifferent output units of the neural networE 0, =1and

training examples of the over-sized class until it matches the S 0, < 1. In standard neural classifiers, the class returned

size of the other class. Since it discards potentially useful
iS arg max O;, while in threshold-moving the class returned is

training examples, the performance of the resulting classifier™ =,

may be degraded. Nevertheless, some studies have shewgmaxO;. O; is computed according to Eq. 6, wheyeis

that under-sampling is effective in learning with imbalanced

data sets [15] [16] [22], sometimes even stronger than oveérnormalization term such thaE Of =1land0 <O} <1.

sampling, especially on large data sets [13] [15]. Drummond =1

and Holte [13] suggested under-sampling to be a reasonable . ,

baseline for algorithmic comparison, but they also indicated O; = ”ZOZCOS’“L[”C] (6)

that under-sampling introduces non-determinism into what is e=1

otherwise a deterministic learning process. With a determinis-The presented threshold-moving algorithm is summarized in

tic learning process any variance in the expected performani@ble 1ll, which is similar to thecost-sensitive classification

C
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TABLE Ill
THE THRESHOLD-MOVING ALGORITHM

TABLE IV
THE HARD-ENSEMBLE AND SOFFENSEMBLE ALGORITHMS

Training phase:

1. LetS be the original training set. 1.
2. Train a neural network frons.
Test phase: 2.

1. Generate real-value outputs with the trained neural network.

2.  For every output, multiply it with the sum of the costs of
misclassifying the corresponding class to other classes.

3. Return the class with the biggest output.

method[19] and the method for modifying the internal classi-
fiers of MetaCost [37] It is obvious that threshold-moving is
very different from sampling because the latter relies on the
manipulation of the training data while the former relies on
manipulating the outputs of the classifier.

Note that threshold-moving has been overlooked for a long
time such that it is not so popular as sampling methods in
addressing the class imbalance problem. Fortunately, recently
it has been recognized that “the bottom line is that when
studying problems with imbalanced data, using the classifiers
produced by standard machine learning algorithms without
adjusting the output threshold may well be a critical mistake
[25]. It has also been declared that trying other methods, such
as sampling, without trying simply setting the threshold may
be misleading [25]. A recent study has shown that threshold-
moving is as effective as sampling methods in addressing the

Training phase:

Let S be the original training setS;, be its subset comprising all
the k-th class examplesk(e {1..C}).
Execute the following steps to train the neural netwdrRv; :
2a.  Put all the original training examples iny.
2b.  For classes withN; > Ny) (k € {1..C}), resample
(N} — Ny) number of examples frons;, and put them
into S7.
2c.  TrainNNp from S7.
Execute the following steps to train the neural netwdiR;:
3a. SetS to S, for the k-th class (ke {1..C'}):
3aa.  Se{S;—Sk)toS5. If NJ < Nj,randomly remove
[NV} /2] number of examples frorfi;, and put these
removed examples int§;; otherwise remove all the
examples fromS;, and put them intaS;.
If S, # 0, randomly pick an examplex in S
and classify it inS3 with the 1-NN rule. If the
classification is correct, then remaxdrom Sy. This
process is repeated until all the examplesjnhave
been examined or the number of removed examples
reacheg Ny — N}'). Merge Sy, into S3.
If there are more thaw; number of k-th class
examples inS3, randomly pick ak-th class example
x and identify its nearest neighbor, sgyin S3. If
y and x belong to different classes and is the
nearest neighbor oy in S;, then removex from
S3. This process is repeated until there are exactly
Ny number ofk-th class examples i3, or all the
k-th class examples have been examined.
If there are more thawv; number of k-th class
examples inS;, randomly remove some examples
until there are exactlyN; number of k-th class
examples.
3b.  TrainNN» from S;.

3ab.

3ac.

3ad.

class imbalance prOblem [22]' 4.  Train the neural networlV N3 from S.
Test phase:
Hard-ensemble:
D. Hard-Ensemble and Soft-Ensemble 1. Generate real-value outputs witiN; and identify the class;

Ensemble learning paradigms train multiple component
learners and then combine their predictions. Ensemble tech-
nigues can significantly improve the generalization ability of 3.
single learners, therefore ensemble learning has been a hot
topic during the past years [10]. Since different cost-sensitive
learners can be trained with the over-sampling, under-sampling.
and threshold-moving algorithms, it is feasible to combine
these learners into an ensemble. 1.

Two popular strategies are often used in combining compo-
nent classifiers, that is, combining the crisp classification deci#:
sions or the normalized real-value outputs. Previous research
on ensemble learning [2] shows that these two strategies can
result in different performance, therefore here both of them
are tried.

Concretely, in both hard-ensemble and soft-ensemble, every.
component learner votes for a class and then the class receiving
the biggest number of votes is returned. If a tie appears, that

which is with the biggest output.

Generate real-value outputs wifiNy and identify the classs

which is with the biggest output.

Generate real-value outputs witiN3, and then:

3a. For every output, multiply it with the sum of the costs of
misclassifying the corresponding class to other classes.

3b. Identify the clasgs which is with the biggest output.

\ote c1, ca andcs to determine the winner class; if a tie appears,

take the one with the biggest cost as the winner class.

Soft-ensemble:

Generate real-value outputs witfiN; and then normalize the

outputs, which results in &-dimensional vectoi/; .

Generate real-value outputs witfiNy and then normalize the

outputs, which results in &-dimensional vecto#%.

Generate real-value outputs witiN3, and then:

3a. For every output, multiply it with the sum of the costs of
misclassifying the corresponding class to other classes.

3b.  Normalize the resulting real-value outputs, which leads to
a C-dimensional vectois.

V= ZZ V;. Identify the biggest component &f and regard its

corresponding class as the winner classyihas multiple biggest

components, take the one with the biggest cost and regard the

corresponding class as the winner class.

is, there are multiple classes receiving the biggest number -of
votes, then the class with the biggest cost is returned. The
only difference between hard-ensemble and soft-ensemble lies
in the fact that the former uses binary votes while the latter

uses real-value votes. In other words, the crisp classificati8ﬁ9'3'0n$f the component leamers are used in hard-ensemble
while the normalized real-value outputs of the component

1it is worth noting that the original MetaCost method [11] does not e>J-eamerS are used in soft-ensemble.

plicitly manipulate the outputs of the classifier. In fact, the original MetaCost Note that here the component learners are generated through
can be regarded as a mixed method which computes the probability estimates

on the training data and then manipulates the training data to construc@gpl}’ing the. over-sgmpling, under-s.ampling a”?' .thre_ShOId'
cost-sensitive classifier. moving algorithms directly to the training set. But it is evident
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TABLE V
UCI| DATA SETS USED IN THE EMPIRICAL STUDY(B: BINARY, N: NOMINAL, C: CONTINUOUS)

| Dataset | Size | Attribute | Class | Classdistribution |
echocardiogram 131 1B 6C 2 88/43
hepatitis 155 | 13B 6C 2 32/123
hearts 270 13C 2 150/120
heart 303 13C 2 164/139
horse 368 4B 11N 7C 2 232/136
credit 690 | 4B 5N 6C 2 307/383
breast-w 698 9C 2 457/241
diabetes 768 8C 2 500/268
german 1000 24C 2 700/300
euthyoid 3163 | 18B 7C 2 293/2870
hypothyoid 3163 | 18B 7C 2 151/3012
coding 20000 15N 2 10000/10000
lympharaphy 148 | 9B 9N 4 2/4/61/81
glass 214 9C 6 9/13/17/29/70/76
waveform 300 + 5000 21C 3 100/100/100
soybean 683 | 16B 19N 19 | 8/14/15/16/20%9/44*2/88/91*2/92
annealing 898 | 22B 10N 6C 5 8/40/67/99/684
vowel 990 10C 11 90*11
splice 3190 60N 3 767/768/1655
abalone 4177 1N 7C 3 1307/1342/1528
satellite 6435 36C 6 626/703/707/1358/1508/1533

thatother variations such as applying these algorithms to boata example of the-th class to the-th class (Cost[i,} = 0),
strap samples of the training set can also be used, which naad Cost[i] (i € {1..C'}) denotes the cost of theth class.
be helpful in building ensembles comprising more componeBkamples of these cost matrices are shown in Table VI. Note
learners. The hard-ensemble and soft-ensemble algorithmstheg the unit cost is the minimum misclassification cost and

summarized in Table IV. all the costs are integers. Moreover, on two-class data sets
these three types of cost matrices have no difference since
I1l. EMPIRICAL STUDY all of them become type (c) cost matrices. Therefore, the

experimental results on two-class tasks and multi-class tasks

A. Configuration . : :
) ] ~will be reported in separate subsections.
Backpropagation (BP) neural network [28] is used in the

empirical study, which is a popular cost blind neural network TABLE VI
easy to couple with the methods presented in Section II. EXAMPLES OF THREE TYPES OF COST MATRIXCostli, j]
Each network has one hidden layer containing ten units

. . . ) Type (a, Type (b Type (c
and is trained to 200 epoches. Note that since the relative ‘ - (.) l s (,) l v (,) ‘
instead of absolute performance of the investigated methods 1 % 2 1 % 3 13 3
are concerned, the architecture and training process of the 1 0 1 8{1 0 3 3|1 0 3 6

i il2 1 0 9|2 1 0 1|2 3 0 1

neural networks have not been finely tuned. 2 1 1 0l3 6 6 0ls 2 5 o

Twenty-one data sets from the UCI Machine Learning
Repository [4] are used in the empirical study, where missing
values on continuous attributes are set to the average valu&nder each type of cost matrix, 10 times 10-fold cross
while that on binary or nominal attributes are set to thealidation are performed on each data set exceptaveform
majority value. Information on these data sets is tabulatedhere randomly generated training data size of 300 and test

Table V. data size of 5000 are used in 100 trials, which is the way this
Three types of cost matrices are used along with these Udzta set has been used in some other cost-sensitive learning
data sets. They are defined as follows [33]: studies [33]. In detail, except owaveform, each data set is

@ 1.0 < Costli,j] < 10.0 only for a single value partitioned into ten subsets with similar sizes and distributions.
of j = ¢ and’Cos;[i j#d =10foralj # i Then, the union of nine subsets is used as the training set while

Costli] = Cost[i, ] for j # ¢ and Cost[d] = 1.0. the remaining_subset is used as the test set. The experiment is
(b) 1.0 < Costi,j] = H; < 10.0 for eachj # i; repeated ten times such that every subset is used once as a test
Cost[i] = H;. At least onef; = 1.0. set. The average test result is the 'result of thg 10-fold cross
(©) 1.0 < Costli,j] < 10.0 for all j # i; Cost[i] = validation. The whole process described above is then repeated
c B ten times with randomly generated cost matrices belonging to
21 Cost[i, c|. At least oneCost|i, j| = 1.0. the same cost type, and the average results are recorded as the

final results, where statistical significance are examined.
Recall that as explained in Section Il, there afeclasses, Besides these UCI data sets, a data set with real-world
Costli,c] (i,c € {1..C'}) denotes the cost of misclassifyingcost information, i.e. th&KDD-99 data set [3], is also used
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TABLE VII
THE KDD-99 DATA SET USED IN THE EMPIRICAL STUDY

| Basicinformation || Costmatrix (misclassify the row-class to the col-clags)
Size: 197,605 Classdistribution || | Normal Probe DOS UZ2ZR R2L |
Attribute: 38,910(19.69%) || Normal 0 1 2 2 2
4 Binary 1,642(0.83%) Probe 1 0 2 2 2
3 Nominal 156,583(79.24%) DOS 2 1 0 2 2
34 Continuous 20 (0.01%) U2R 3 2 2 0 2
Class:5 450 (0.23%) R2L 4 2 2 2 0

in the empirical study. This is a really large data set, which is
utilized in the same way as that of Abe et al. [1]. Concretely,

the so-called 10% training set is used, which consists roughly ™ s 7w
of 500,000 examples, and further sampled down by random - . =
sampling 40% of them, to get the data set of size 197,605 - 5 E
which is used in this study. Information on this data set is m .' |
shown in Table VII. In each experiment, two thirds of the L | B ]
examples in this data set is randomly selected for training . : . B BB

while the remaining one third for testing. The experiment is
repeated ten times with different training-test partition and ‘

ver-smy Undersanp Theemoy Hardoens Softens

Echotardiogram [ Hepatitis 7] Heart s [JHeart
I croit B Breast-w B Crsbetes
W Eahyred B Hypothyroid [l Coding

the average result is recorded. Since this is a multi-class data
set, the experimental results will be reported in the subsection
devoting to multi-class tasks.

Fig. 1. Robustness of the compared methods on two-class data sets

B. Two-Class Tasks
nder-sampling, andNBOTE are worse than that of threshold-

As shown in Table V, there are twelve two-class data seys

The detailed 10 times 10-fold cross validation results on them "9 and ensemble methods, the performance of threshold-

are shown in Table VIII. moving is comparable to that of the ensemble methods. It

To compare the robustness of these methods, that is his}ﬁ\?oteworthy that on two seriously imbalanced data sets, i.e.
. L R hyroidandh hyroid only threshold-moving is effectiv
well the particular method performs in different situations, yroidandhypothyroid only threshold-moving is effective,

a criterion is defined similar to the one used in [36]. In detailyh”e all the other methods except soft-ensemblenthyroid

the relative performance of algorithmon a particular data set ause negative effect.
_ Ve p nance ot aigon particu ala s When dealing with two-class tasks, some powerful tools
is expressed by dividing its average cestt,, by the biggest

i Il th d thod h such asROC curve[26] or cost curve[12] can be used to
zé\(/]er?ge cost among all the compared methods, as ShOWR L re the learning performance. Note that ROC and cost

curves are dual representations that can be easily converted
cost into each other [12]. Here cost curve is used since it explicitly
0= ———r (7) shows the misclassification costs. Tkexis of a cost curve
max cost; . . . .. .
i is the probability-cost function for positive examples, defined
as Eq. 8, wheren(+) is the probability of a given example
the other methods have, < 1. The smaller the value of, . belonging to the positive clas§ost[+, —]| is the cost incurred

the better the performance of the method. Thus the sum, of if a positive example is mlsc!assme_d 'to negative c[as;, and
i A —) and Cost[—,+] are defined similarly. They-axis is
over all data sets provides a good indication of the robustness : . .
expected cost normalized with respect to the cost incurred
of the methoch. The smaller the value of the sum, the benevrvhen every example is incorrectly classified. Thus, the area
the robustness of the method. The distributionrgfof each y P y ) '

. : under a cost curve is the expected cost, assuming a uniform
compared method over the experimental data sets is shown bt " . :
. distribution on the probability-cost. The difference in area
Fig. 1. For each method, the twelve valuesrgfare stacked . .
. under two curves gives the expected advantage of using one
for the ease of comparison. o
. classifier over another. In other words, the lower the cost curve,
Table VIII reveals that on two-class tasks, all the investy; . -
. I . he better the corresponding classifier.
gated methods are effective in cost-sensitive learning because
the misclassification costs of all of them are apparently less Cost
than that of sole BP. This is also confirmed by Fig. 1wherethe  pCF(+) = p(+)Cost[+, -] @)
robustness of BP is the biggest, that is, the worst. Table VIII p(+)Cost[+, =] + p(—)Cost[—, +]
and Fig. 1 also disclose that the performance ofo$E is The cost curves on the two-class data sets are shown in
better than that of under-sampling but worse than that Bfg. 2. On each figure, the curves corresponding to BP, over-

over-sampling. Moreover, the performance of over-samplingampling, under-sampling, threshold-moving, hard-ensemble,

Theworst algorithma* on that data set has,- = 1, and all
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TABLE VIl
EXPERIMENTAL RESULTS ON TWQCLASS DATA SETS THE TABLE ENTRIES PRESENT THE REAL RESULTS OBP OR THE RATIO OF OTHER METHODS
AGAINST THAT OF BP. THE VALUES FOLLOWING ‘£’ ARE STANDARD DEVIATIONS.

| Dataset [ BP [ over-sampling under-sampling  threshold-moving hard-ensemble soft-ensemble MOTES |

| Cost: Misclassification cost |
edhocardiogram 14.70 £ 5.90 767 £+ .167 728 £+ .243 716 £ .163 676 £+ .167 707 £ .173 .861 £ .262
hepatitis 8.22 + 3.75 .896 + .182 1.113 + .313 870 4 .144 .800 £ .103 .785 £ .110 1.363 + .486
hearts 17.67 £ 7.57 .886 4 .190 .760 £ .200 794 £ .182 709 £ .164 .697 £ .149 .791 £ .188
heart 19.32 £ 9.64 .878 £+ .130 .800 £ .206 .823 +.135 756 + .172 752 £+ .155 .802 £ .205
horse 19.73 £ 7.15 .803 £ .104 1929 £ .152 77T £+ .102 731 4+ .153 717 £+ .158 .843 £ .182
credit 38.69 + 14.68 766 £+ .164 .822 £+ .211 .665 £+ .181 .656 £+ .159 657 £ .167 1935 £+ .198
breast-w 8.72 + 3.09 945 4+ .173 1.003 + .143 .854 4+ .168 793 £+ .156 .796 £+ .180 .851 4 .244
diabetes 61.65 + 18.67 .625 4 .166 .656 £ .159 .555 4 .148 .581 £+ .163 .585 £ .163 .645 4 .143
german 82.63 + 39.60 .801 £ .214 .813 £ .255 .712 £+ .180 .696 £ .232 .690 £ .219 782 + .207
euthypoid 37.44 + 13.67 1.279 £ .230 1.719 + .646 .829 £+ .111 1.016 £ .075 967 £+ .086 1.280 £ .212
hypothypid 11.86 £ 5.06 1.604 £ .515 1.717 £ .528 .834 £+ .109 1.127 £ .210 1.021 £+ .201 1.569 + .454
coding 2782.20 + 1027.49 403 £+ .171 404 £+ 171 .405 £+ .170 .400 £+ .169 .398 £+ .167 403 £+ .171

| ave [ 258.57 4+ 795.07 [ .888 £ .304 .955 £ .397 .736 + .138 745 + .188 731 £+ .162 927 £+ .324 |

| No. HC Errors: Number of high cost errors |
edhocardiogram 2.20 £ .45 565 £ .227 434 £+ .218 .526 & .155 438 + .167 461 £+ .173 .815 4+ .334
hepatitis 1.45 £+ .22 .800 + .252 .586 + .366 788 £ .175 627 + .144 .608 £ .141 1.286 + .871
hearts 2.58 + .22 .824 4+ .197 493 £+ .271 .661 £ .190 565 + .171 .554 £+ .161 .692 £+ .186
heart 3.12 + .34 789 £+ .119 .555 4+ .261 .698 £ .142 614 4+ .182 611 £+ .167 .692 £+ .205
horse 3.48 + .36 .665 4+ .179 .593 £ .252 .586 4 .097 .531 £+ .181 .506 £ .196 673 + .211
credit 5.15 + .54 .599 £ .196 1490 £+ .199 449 4+ .178 442 + 175 445 £+ .195 .801 £ .442
breast-w 1.50 £+ .24 872 4+ .203 .897 £ .159 746 £ .184 .704 + .199 .708 £+ .231 .789 &£ .348
diabetes 8.91 +2.03 317 £+ .268 .302 £ .259 .205 £ .098 242 4+ .214 .237 £ .208 .373 £+ .243
german 13.43 £ 2.65 .601 £ .353 479 £+ .383 .480 £+ .170 431 £+ .271 1409 £ .262 592 £ .345
euthyoid 4.88 + .34 .661 4+ .571 .640 £ .457 .584 4+ .107 .598 £ .346 .589 £ .303 .766 £ .688
hypothypid 1.95 £ .28 1.475 £ 1.079 1.146 £ .756 .600 £+ .122 .905 £+ .514 764 £ .422 1.403 £+ 1.043
coding 375.41 + 48.41 .115 4+ .091 .096 £+ .073 .116 4 .087 .069 £ .064 .068 £+ .066 .121 £ .092

| ave [ 35.34 + 107.15 [ .690 £ .329 .559 + .266 .537 £+ .203 514 £+ .216 497 £+ .194 750 £ .344 |

| No. Errors : Total number of errors |
echocardiogram 4.36 £ .25 1.132 £.128 1.319 + .322 1.148 £ .127 1.160 £ .117 1.193 £+ .140 1.013 £ .112
hepatitis 2.94 + .25 1.068 £+ .143 2.032 + 1.200 1.007 £ .132 1.082 £ .179 1.078 £ .203 1.529 + .301
hearts 5.53 £ .45 1.024 £ .180 1.414 + .312 1.093 £ .066 1.039 £ .131 1.030 £ .133 1.006 £ .166
heart 6.18 £+ .43 1.056 £ .090 1.382 £ .333 1.099 £ .119 1.072 £ .110 1.073 £ .126 1.034 £ .091
horse 7.03 + .25 1.085 £ .186 1.574 £+ .407 1.108 £ .100 1.117 £ .209 1.123 £+ .196 1.171 £ .161
credit 10.26 £ .52 1.250 £ .123 1.780 £+ .572 1.253 + .131 1.264 £+ .163 1.277 £+ .187 1.461 £+ .459
breast-w 3.06 £+ .36 1.068 £ .118 1.217 £+ .202 1.068 £ .119 .959 4+ .084 .957 £+ .096 1.005 £+ .124
diabetes 17.96 £ .59 1.424 £ .305 1.574 + .391 1.350 £ .145 1.430 £ .265 1.451 + .291 1.353 £ .282
german 25.93 +1.16 1.313 £ .277 1.647 £ .573 1.184 + .187 1.313 £ .317 1.347 + .364 1.273 £ .250
euthyoid 9.79 £+ .33 3.068 +1.937 5.173 4+ 4.549 1.501 £ .223 2.264 +1.291 2.089 4+ .969 2.827 £+ 1.627
hypothypid 4.07 £ .28 1.809 £ .569 3.439 + 5.120 1.300 + .269 1.512 + .648 1.481 £+ .709 1.885 £+ .787
coding 729.63 £+ 5.13 1.253 £ .074 1.269 + .064 1.257 £.070 1.277 £ .076 1.272 4 .080 1.244 £+ .075

| ave | 68.90+£208.19 | 1.3794.576 1.985+1.168  1.197+.140  1.291 4 .348  1.281+ .303  1.400 £ .521 |

soft-ensembleand SWOTE are depicted. Moreover, the trian-under-sampling, and threshold-moving. @orse threshold-
gular region defined by the poin(s, 0), (0.5,0.5), and(1,0), moving and the ensemble methods are better than the other
i.e. theeffective rangeis outlined, inside which useful non-methods. Orecredit under-sampling andMSOTE are apparently
trivial classifiers can be identified [12]. Note that in order tavorse than others. Olreast-w under-sampling is slightly
obtain these curves, experiments with different cost-ratios haverse than the other methods. @iabetesthreshold-moving
been performed besides these reported in Table VIIl. is the best while under-sampling is the worst. @arman
the ensemble methods are better than othershypothyroid

Fig. 2 exhibits that orechocardiogramunder-sampling is hold . d i better than the oth
slightly worse than the other methods in the effective rangtg',reS old-moving and over-sampling are betier than the other
methods while under-sampling is the worst. ©oding the

while SMOTE is very poor whenPCF'(+) is smaller than . . L
0.3. On hepatitis, the ensemble met(ho)ds are significant semble methods are slightly better whilacBe is slightly
' jorse than others. Totally, Fig. 2 reveals that all the cost-

better than the other methods in the effective range, und e . .
sampling is very bad whe®CF(+) is smaller than 0.4 sensitive learning methods are effective on two-class tasks
and over-sampling, threshold-moving and ensemble méth&%cause on all the data sets the cost curves have a large portion
: . .. or even almost fully appear in the effective range. Moreover,
are poor whenPCF is bigger than 0.85. Oruthyroid . ° :
P +) 99 yroid IJ&dISC|OS€S that the ensemble methods and threshold-moving

threshold-moving is the best, under-sampling is the wo . .
in the effective range, while the ensemble methods becor%rﬁ often better while under-sampling are often worse than the
i other methods.

poor when PCF(+) is bigger than 0.8. On the remaining
nine data sets all the methods work well. @earts the In summary, the observations reported in this subsection
ensemblanethods are slightly better than others. artthe suggest that on two-class tasks: 1) Cost-sensitive learning is
ensemble methods are apparently better than over-sampliradatively easy because all methods are effective; 2) Higher
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Fig. 2. Cost curves on two-class data sets

degree of class imbalance may increase the difficulty of co3; and Xl, respectively. The comparison on the robustness of
sensitive learning; 3) Although the sampling methods artifferent methods are shown in Figs. 3 to 5, respectively.
SmOTE are effective, they are not so good as threshold-movingTaple X shows that on multi-class UCI data sets with type
and ensemble methods; 4) Threshold-moving is a good chofg§ cost matrix, the performance of over-sampling, threshold-
which is effective on all the data sets and can perform cogfoving and ensemble methods are apparently better than that
sensitive learning even with seriously imbalanced data sef$; sole BP, while the performance of under-sampling and
5) Soft-ensemble is also a good choice, which is effective & ote are worse than that of sole BP. Fig. 3 shows that
most data sets and rarely cause negative effect. soft-ensemble plays the best, while the robustness of under-
sampling is apparently worse than that of sole BP. Table IX
C. Multi-Class Tasks and Fig. 3 also show that threshold-moving and soft—ensemb!e
' are effective on all data sets, hard-ensemble causes negative
As shown in Table V, there are nine multi-class UCI dateffect onsoybearwhich is with the biggest number of classes
sets. The detailed 10 times 10-fold cross validation results and suffering from serious class imbalance. It is noteworthy
them with types (a) to (c) cost matrices are shown in Tables I¥iat the sampling methods andiSTE cause negative effect
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TABLE IX
EXPERIMENTAL RESULTS ON MULT-CLASS UCI DATA SETS WITH TYPE(A) COST MATRIX. THE TABLE ENTRIES PRESENT THE REAL RESULTS OBP OR
THE RATIO OF OTHER METHODS AGAINST THAT OFBP. THE VALUES FOLLOWING ‘&’ ARE STANDARD DEVIATIONS.

Dataset [ BP [ over-sampling under-sampling threshold-moving hard-ensemble soft-ensemble MOTES |

| Cost: Misclassification cost |

lympharaphy 7.98 £ 4.42 .928 £+ .336 1.934 £1.277 .894 + .155 .660 + .363 .675 £ .378 .732 + .513
glass 12.18 £5.22 1.029 £ .313 1.244 £+ .289 1913 + .058 .875 + .135 .935 £ .170 1.008 £ .295
waveform 2641.69 + 539.59 .924 £+ .055 .839 £+ .094 .842 + .044 .761 + .056 .751 & .057 .837 + .069
soybean 8.02+1.10 1.212 + .256 8.042 + 1.010 1993 + .026 1.108 £ .125 .885 + .072 7.886 + 1.216
annealing 68.17 + 42.22 1.327 £+ .951 2.029 + 1.598 .814 + .148 1927 + .496 .881 + .442 1.241 £ .869
vowel 46.35 + 7.46 917 £ .127 907 £ .111 .895 + .080 .761 + .110 .760 £+ .080 1904 + 171
splice 151.05 + 55.83 .680 £ .237 743 £+ .241 .664 + .178 .590 + .179 570 £ .170 .646 + .233
abalone 502.03 £ 89.45 1433 £+ .090 435 4+ .089 .431 + .081 .432 + .087 432 £+ .087 .435 + .088
satellite 209.76 £ 79.07 77T £+ 214 735 + .160 794 + 145 .700 + .153 712 + .162 766 + .212
| ave | 405.25 +853.41 | .914 + .269 1.879 £ 2.375 .804 + .167 757 £ .198 .733 £ .161 1.606 & 2.366 |

| No. HC Errors: Number of high cost errors |

lympharaphy .98 £ .67 761 £ .371 5.654 + 7.838 .686 + .304 3.691 +£5.049 3.169 £5.019 3.445 + 4.525
glass 1.28 +1.28 1.200 £ 1.052 1.121 £ .827 694 + .179 .656 + .355 .840 £+ .391 1.239 £ 1.203
waveform 318.13 £27.95 .892 £ .063 672 £ .170 749 £+ .046 .666 + .076 .659 +.078 772 £ .091
soybean .29 + .43 1.980 £ .960 9.137 £ 3.674 .936 £+ .088 .362 + .248 1.051 £.295  36.574 £ 29.080
annealing 1.45+7.88 3.229 £5.924 6.895 £ 14.669 .501 £ .386 .542 + .927 .877 £ 1.305 3.757 £ 7.901
vowel 3.41+£.72 .625 £ .157 .602 £ .175 .628 + .127 .394 + .162 527 £ .128 .650 + .281
splice 19.40 £ 8.52 497 £+ .288 480 £+ .270 .384 + .133 357 + .194 .339 +.183 .458 + .266
abalone 60.04 + 22.44 .049 £+ .102 .046 £+ .092 .036 + .071 .044 + .091 .045 +.093 .051 + .105
satellite 21.03 + 10.95 484 4+ .318 457 +.193 .569 + .186 .403 + .152 452 + .166 475 + .363
| ave | 48.334+102.91 | 1.080 4+ .971 2.785 + 3.459 .576 + .255 .790 + 1.104 .884 + .910 5.269 + 11.815 |

| No. Errors : Total number of errors |

lympharaphy 2.88 £ .20 973 £ .194 3.074 + .263 1.030 £ .097 1937 + .131 .931 £ .159 1956 + .144
glass 7.12 £ .43 1.186 £ .180 1.502 £ .277 1.038 £ .069 1.115 £ .198 1.132 £ .176 1.173 £ .168
waveform 997.15 £ 14.03 1.011 £ .022 1.278 £ .128 1.035 £ .015 978 +.028 971 £+ .029 1.003 £ .023
soybean 7.31£.70 1.142 £ .178 7.847 £ .778 1.001 £ .021 1.172 £ .110 .881 + .084 7.609 £ .778
annealing 19.12 £1.33 2.552 + .739 3.457 + .586 1.035 £ .055 2.293 £ .779 2.005 £+ .670 2.437 £+ .696
vowel 30.36 £ .81 1.083 £ .051 1.071 £+ .039 1.052 £ .031 1956 + .028 .895 +.028 1.075 £ .063
splice 53.52 +9.10 1.080 £ .143 1.283 £ .163 1.145 £ .113 1.044 £ .123 1.028 £ .109 1.039 £ .152
abalone 186.86 + 1.79 1.052 £ .044 1.062 £ .059 1.068 £ .063 1.056 £ .052 1.055 £ .050 1.051 £ .041
satellite 98.32 + 1.83 1.123 £+ .112 1.081 £+ .157 1.040 £ .027 1.025 £ .079 1.010 £ .060 1.103 £ .124

| ave 155.85 & 321.04

1.245 £ .495 2.406 + 2.232 1.049 £ .040 1.175 £ .426 1.101 £ .348 1.938 £2.176 ‘

i
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Fig. 3. Robustness of the compared methodsFig. 4. Robustness of the compared methodsFig. 5. Robustness of the compared methods
on multi-class UCI data sets with type (a) coston multi-class UCI data sets with type (b) coston multi-class UCI data sets with type (c) cost

on several data sets suffering from class imbalance, thatigsnoteworthy that the sampling methods cause negative effect

glass,soybeamand annealing. on almost all data sets suffering from class imbalance, that is,
mphographyglass,soybearmand annealing. It can be found

om comparing tables IX and X that all the methods degrade

hfen type (a) cost matrix is replaced with type (b) cost matrix,
ich suggests that the type (b) cost matrix is more difficult
learn than the type (a) cost matrix.

Table X shows that on multi-class UCI data sets wit
type (b) cost matrix, the performance of threshold-mow
and ensemble methods are apparently better than that
sole BP, while the performance of sampling methods ar
SMOTE are worse than that of sole BP. Fig. 4 shows that
soft-ensemble plays the best, while the robustness of underTable XI shows that on multi-class UCI data sets with
sampling is apparently worse than that of sole BP. Table X atype (c) cost matrix, the performance of threshold-moving
Fig. 4 also show that threshold-moving is always effectivand soft-ensemble are better than that of sole BP, while the
and soft-ensemble only causes negative effect on the mpstformance of the remaining methods are worse than that
seriously imbalanced data sahnealing. $10TE and hard- of sole BP. In particular, the average misclassification costs
ensemble cause negative effect smybeanand annealing. It of under-sampling and MBOTE are even about 2.4 and 1.9
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EXPERIMENTAL RESULTS ON MULTFCLASS DATA SETS WITH TYPE(B) COST MATRIX. THE TABLE ENTRIES PRESENT THE REAL RESULTS OBP OR THE

TABLE X

RATIO OF OTHER METHODS AGAINST THAT OFBP. THE VALUES FOLLOWING ‘£’ ARE STANDARD DEVIATIONS.

| Dataset [ BP [ over-sampling under-sampling  threshold-moving hard-ensemble soft-ensemble  MOTES |

| Cost: Misclassification cost |
lympharaphy 6.85 £+ 2.45 1.008 + .311 2.160 4+ .883 .937 £ .093 .823 £ .373 774 £+ .352 .807 £ .406
glass 28.40 + 8.35 1.005 £ .137 1.280 £+ .238 .938 £ .078 .931 £+ .124 1943 £+ .121 979 £+ .167
waveform 4084.42 + 1016.98 .927 £ .046 .933 £ .079 .868 £ .042 .798 £+ .055 787 £ .056 .858 4 .047
soybean 21.00 + 5.49 1.104 £ .207 7.884 4+ 1.745 .970 £ .066 1.108 £ .175 .858 £ .069 7.332 + 1.448
annealing 93.66 + 28.65 1.882 + .793 2.941 + 1.423 .934 £+ .091 1.401 + .383 1.156 £ .247 1.866 £ .735
vowel 158.91 + 26.59 .887 £ .095 919 4+ .073 .960 £ .050 .839 £+ .086 791 4+ .078 871 £+ .073
splice 217.42 + 61.54 763 £ .140 .884 4+ .159 .847 £ .107 .696 £ .089 .678 4+ .081 .739 £ .143
abalone 701.57 4 265.53 672 £ .148 674 £ .149 .669 £ .145 671 £ .148 .669 + .148 .667 £ .146
satellite 486.10 4 109.84 .851 £ .108 .849 £+ .077 .865 £ .086 .790 £ .087 778 £ .090 .845 £+ .116

| ave [ 644.26 + 1311.39 [ 1.011 + .352 2.058 + 2.309 .888 £ .093 .895 £ .230 .826 4+ .149 1.663 £+ 2.156 |

| No. HC Errors: Number of high cost errors |
lympharaphy 1.66 &+ .70 1.037 £ .418 2.067 + 1.906 875 £ .125 .970 £+ .836 .933 £ .847 .881 £+ .755
glass 5.56 & 1.52 1.038 £ .344 1.373 £ .448 .939 £+ .186 974 £+ .297 1.011 £ .314 1.013 £ .365
waveform 662.64 + 30.31 .908 £+ .055 .820 4+ .109 .844 + .046 756 £ .062 742 + .064 .829 £+ .055
soybean 5.71 &+ 1.56 1.145 + .227 8.535 + 2.157 .957 £ .108 1.181 + .251 .861 £ .112 7.905 + 1.693
annealing 14.85 £+ 3.15 2.114 +£1.238 3.229 £ 1.771 L9981 £ .227 1.688 £ 1.057 1.383 £ .936 2.074 +1.171
vowel 27.32 = 1.53 1.097 £+ .128 1.137 £ .125 1.136 £ .125 1.066 £ .152 .994 + .146 1.084 £ .140
splice 36.07 + 6.02 .735 £ .203 .868 £+ .329 .792 £ .160 .664 £+ .201 .641 4+ .192 714 £+ .191
abalone 115.50 + 24.84 .654 £+ .192 .654 £+ .197 .645 £+ .185 .651 £+ .193 .649 £+ .192 .647 £ .190
satellite 80.33 + 15.80 .932 £ .249 .961 £ .392 .918 £ .150 872 £ .241 .848 £+ .212 .918 £ .229

| ave | 105.52+212.43 | 1.073+.423 2.183 4+ 2.515 -899 + .136 -980 + .320 .896 4 .228  1.785 +2.333 |

| No. Errors : Total number of errors |
lympharaphy 2.71 + .28 1.063 +.251  3.182 4 .625 1.065 + .102 1.086 +.266  1.003+.185  1.060 & .212
glass 7.27 & .41 1.331 £ .193 1.676 £ .254 1.131 £ .112 1.292 £+ .199 1.317 £ .237 1.288 + .168
waveform 987.82 + 14.70 1.031 £+ .031 1.446 £+ .111 1.051 £+ .028 1.020 £ .034 1.011 £.033 1.013 £+ .027
soybean 7.02 + .94 1.271 + .301 8.429 + 1.186 1.050 £ .061 1.406 £ .229 979 + .181 7.900 + 1.087
annealing 17.90 £ .70 2.426 + .761 3.417 + .768 1.209 £ .263 2.149 4+ .998 1.900 £ 1.029 2.434 + .705
vowel 30.97 + 1.49 1.289 + .128 1.325 £ .112 1.319 £ .100 1.279 £+ .125 1.200 £ .108 1.273 £ .116
splice 50.98 + 8.39 1.252 £ .296 1.511 £ .376 1.306 £+ .139 1.228 £+ .293 1.196 £ .295 1.224 + .284
abalone 185.86 £ 1.55 1.098 £+ .075 1.105 £ .094 1.097 £+ .081 1.100 £ .082 1.098 £+ .082 1.092 + .071
satellite 99.01 + 2.08 1.314 £+ .290 1.379 £ .413 1.196 £ .169 1.234 £ .270 1.199 £ .245 1.254 + .204

| ave | 154.394+318.12 | 1.342+.422 2.608 £2.337  1.158 £.105  1.310+.336  1.212+.282  2.060 =+ 2.232 |

times of that of sole BP, respectively. Fig. 5 confirms thadf under-sampling and NBOTE are apparently worse than
soft-ensemble plays the best, while the sampling methods d@hdt of sole BP. In other words, none of the studied cost-
SMOTE are worse than sole BP. Table XI and Fig. 5 alssensitive learning methods is effective on this data set, but
show that soft-ensemble only causes negative effejlass over-sampling, threshold-moving and the ensemble methods
and the most seriously imbalanced data amtealing, hard- do not cause negative effect while under-sampling amd &
ensemble causes negative effect on one more data set, daeise negative effect. The poor performance of under-sampling
soybean. Threshold-moving does not cause negative effecti@not difficult to be expected because on Ki2D-99 data set,
glass, but it causes negative effectlpmphographyandvowel. the classes are seriously imbalanced therefore under-sampling
The sampling methods andv®TE cause negative effect onhas removed so many big class examples that the learning
more than half of the data sets. It is noteworthy that neithprocess has been seriously weakenedo®: causes negative
method is effective on the most seriously imbalanced data sffiect may because the serious imbalanced class distribution
annealing. Comparing Tables IX to X, it can be found that theas hampered the generation of synthetic examples. In other
performance of all the methods degrade much more when typerds, some synthetic examples generated on the line seg-
(b) cost matrix is taken over by type (c) matrix than when typments connecting the small class examples may be misleading
(a) cost matrix is taken over by type (b) cost matrix, whickince the small class examples are surrounded by a large
suggests that the type (c) cost matrix may be more difficuitimber of big class examples. The poor performance of under-
to learn than the type (b) cost matrix, and the gap betwesampling may also causes the ineffectiveness of the ensemble
the types (b) and (c) cost matrices may be bigger than thméthods. Nevertheless, it is noteworthy that threshold-moving
between the types (a) and (b) cost matrices. and the ensemble methods have not cause negative effect on

Table XII presents the experimental results on ktizD-99 this seriously imbalanced data set.

data set. It can be found that the performance of thresholddn summary, the observations reported in this subsection
moving is better than that of sole BP, while the performanaiggest that on multi-class tasks: 1) Cost-sensitive learning is
of the ensemble methods and over-sampling are worse thiatatively more difficult than that on two-class tasks; 2) Higher
that of sole BP. However, pairwise two-tailedests with .05 degree of class imbalance may increase the difficulty of cost-
significance level indicate that these differences are withaggnsitive learning; 3) The sampling methods amtb$E are
statistical significance. On the other hand, the performangsually ineffective and often cause negative effect, especially
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TABLE XI
EXPERIMENTAL RESULTS ON MULTFCLASS UCI DATA SETS WITH TYPE(C) COST MATRIX. THE TABLE ENTRIES PRESENT THE REAL RESULTS OBP OR
THE RATIO OF OTHER METHODS AGAINST THAT OFBP. THE VALUES FOLLOWING ‘&’ ARE STANDARD DEVIATIONS.

|Dataset [ BP [over-sampling under-sampling  threshold-moving  hard-ensemble  soft-ensemble MOTES |

| Cost: Misclassification cost |

lympharaphy 7.65 + 2.03 961 £ .154 3.322 + .894 1.017 £ .063 .965 £ .147 .910 £ .089 1.008 + .207
glass 37.12 + 8.58 1.134 + .268 1.554 + .356 .961 £+ .106 1.057 £.217 1.076 £ .191 1.135 £+ .192
waveform 4889.81 + 798.25 .988 £ .047 1.029 £ .044 972 £ .032 .897 £ .046 .889 £ .044 .970 £ .057
soybean 21.11 + 2.64 1.215 £+ .255 8.334 +1.073 1.020 £ .048 1.267 £ .322 .897 £ .128 8.042 + .815
annealing 105.62 + 24.26 2.416 + .707 3.590 + .935 1.019 £ .090 1.937 £ .374 1.617 £ .269 2.258 + .648
vowel 171.89 + 16.85 1.008 + .085 991 4+ .074 1.010 £+ .031 .875 £ .067 .841 £ .046 1.011 £ .040
splice 241.85 4+ 82.98 1.007 £ .195 1.068 £+ .218 1993 £ .050 .875 £ .165 .860 £ .144 .953 £+ .213
abalone 905.32 4+ 211.00 .854 4 .299 .859 + .304 .805 £ .252 .838 £ .288 .831 £ .283 .855 4 .296
satellite 555.35 & 118.14 .965 £ .176 .945 £ .166 .936 £ .065 .887 £ .139 .880 £ .127 971 £ .184

| ave [ 770.64 4+ 1572.99 [ 1.172 £+ .478  2.410 + 2.458 .970 £ .069 1.067 £ .353 .978 £ .250 1.911 £+ 2.338 ‘

| No. HC Errors: Number of high cost errors |
lympharaphy 2.05 + .47 .968 £ .188 3.523 £ 1.176 1.025 £ .077 974 £ .162 1904 £ .122 1.054 + .211
glass 6.59 + .88 1.200 £ .199 1.612 £ .196 1.040 £ .062 1.155 £+ .144 1.166 £ .109 1.227 +.113
waveform 781.98 4+ 76.09 .991 £+ .031 1.058 £+ .037 .984 £+ .017 .914 £+ .015 .904 + .016 .974 £+ .036
soybean 6.15 £ .69 1.186 £ .257 8.192 + .970 1.023 £ .049 1.269 £ .324 .896 £ .124 7.955 £ .695
annealing 17.08 £ 2.64 2.627 + .681 3.818 4+ 1.000 1.031 £ .077 2.151 4+ .546  1.736 £ .405 2.325 + .436
vowel 29.89 + 1.67 1.029 £+ .074 1.005 £ .077 1.020 £ .025 .889 + .065 .847 £ .051 1.019 + .048
splice 42.76 + 6.07 1.085 £+ .198 1.174 £+ .261 1.022 £ .044 .936 £ .176 917 £ .157 1.025 + .215
abalone 155.85 £+ 18.97 .820 £ .212 .825 4+ .214 812 £+ .211 .810 £ .208 .809 £ .208 .825 £+ .214
satellite 94.69 + 5.93 .968 £ .170 .958 £ .162 .968 £ .060 901 £ .132 .897 £ .123 972 £+ .181

| ave | 126.34+251.05 | 1.208 + .545 2.463+2.429  .992+.071  1.1114 .415 1.009 &.291 1.931 +2.303 |

| No. Errors : Total number of errors |
lympharaphy 2.75 + .26 .998 £ .105 3.166 + .396 1.021 £ .037 .984 £ .079 .933 £+ .066 1.032 £ .176
glass 6.87 £ .55 1.199 + .173 1.603 £ .139 1.035 £ .053 1.155 £ .122 1.158 £+ .094 1.231 £+ .106
waveform 992.05 + 28.40 .998 £ .028 1.105 £ .060 1.009 £ .008 .937 £.018 .927 £ .017 .993 £+ .034
soybean 6.98 + .49 1.172 £ .212 8.334 + .582 1.017 £ .042 1.260 £ .221 .873 £ .092 8.070 &+ .564
annealing 18.28 + 1.63 2.528 + .477 3.667 £+ .391 1.029 £ .079 2.109 4+ .544  1.726 £ .404 2.325 + .436
vowel 31.80 + .74 1.036 £+ .071 1.014 £ .080 1.025 £ .029 1901 £ .062 .856 £ .040 1.023 £ .038
splice 52.21 + 7.38 1.040 £+ .134 1.132 £ .207 1.053 £+ .062 .924 £+ .125 .903 £ .119 .995 £ .142
abalone 186.72 + 1.54 1.045 + .033 1.050 £+ .034 1.040 £ .026 1.044 £+ .027 1.043 £+ .026 1.048 + .025
satellite 99.48 + 1.38 1.045 £+ .074 1.017 £ .086 1992 + .031 957 £.037 .949 + .034 1.051 £ .078

l ave [ 155.24 + 319.42 [ 1.229 + .493 2.454 4 2.423 1.025 £ .018 1.141 £ .382  1.041 £ .273 1.974 + 2.325 ‘

TABLE XII

EXPERIMENTAL RESULTS ONKDD-99. THE TABLE ENTRIES PRESENT THE REAL RESULTS OBP AND THE STUDIED COSTFSENSITIVE LEARNING
METHODS. THE VALUES FOLLOWING ‘4’ ARE STANDARD DEVIATIONS.

| Comparedssue | BP | over-sampling under-sampling threshold-moving  hard-ensemble soft-ensemble  MOTES |

420.1 +305.4 | 1,228.8 +1,546.9 70,761 + 36,201 386.2 £ 322.1 624.0 +365.3 445.4 +264.6 617.3 +271.9
139.8 £125.3 560.2 £ 672.9 27,556 £ 21,314 132.24+129.9 295.4 4+ 184.0 200.5 +133.3 283.1 +136.7
184.8 £+ 159.4 659.3 + 874.8 43,200 £ 18,265 176.6 £ 164.5 320.5 £ 182.2 232.7 £134.0 327.3 £138.4

Misclassificationcost
No. HC Errors
No. Errors

ondata sets with a big number of classes; 4) Threshold-movingAlmost as the same time as this paper was written, Abe
is a good choice which causes relatively fewer negative effesttal. [1] proposed an algorithm for solving multi-class cost-
and may be effective on some data sets; 5) Soft-ensemblesénsitive learning problems. This algorithm seems inspired
also a good choice, which is almost always effective but méy an earlier work of Zadrozny and Elkan [39] where every
cause negative effect on some seriously imbalanced data setample is associated with an estimated cost. Since in multi-
class tasks such a cost is not directly available, itbeative
weightinganddata space expansionechanisms are employed
to estimate for each possible example an optimal cost (or

The empirical study presented in Section Il reveals th¥{€ight). These mechanisms are then unified in the GBSE
cost-sensitive learning is relatively easy on two-class tasi@radient Boosting with Stochastic Ensembles) framework to
while hard on multi-class tasks. This is not difficult to unt/S€- Note that both the GBSE and our soft-ensemble method
derstand because an example can be misclassified in migfBl0it ensemble learning, but the purpose of the former is to
ways in multi-class tasks than it might be in two-class taskdiake thg iterative weighting process feas@le while the latter is
which means the multi-class cost function structure can Hcombine the goodness of different learning methods. GBSE
more complex to be incorporated in any learing algorithm@nd soft-ensemble have achieved some success, nevertheless,
Unfortunately, previous research on cost-sensitive learnifffyestigating the nature of multi-class cost-sensitive learning
rarely pays attention to the differences between multi-cla@8d designing powerful learning methods remain important
and two-class tasks. open problems.

IV. DISCUSSION



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

TABLE XIlI
AVERAGE QQqv VALUES OF THE LEARNERS GENERATED BY OVERSAMPLING, UNDER-SAMPLING, AND THRESHOLD-MOVING.

[ Two-class data set _Qav__I| pyypi.class data se Qav ‘
echocardiogram 779 £ .135 Cost(a) Cost(b) Cost(c)
hepatitis .552 4 .201 |[ lympharaphy .365 £.092 | .375 £ .170 | .308 £ .142
hearts 774 + .083 || glass .615 4+ .108 | .615 4+ .128 | .638 £ .134
heart .790 + .092 || waveform .815 4+ .037 | .799 £ .025 | .859 +.023
horse .826 + .064 || soybean 518 +.094 | .476 £ .138 | .474 + .141
credit .884 + .038 || annealing .019 £+ .219 | .221 4+ .171 | —.030 % .088
breast-w .805 + .082 || vowel .706 £ .040 | .792 4+ .044 | .696 £ .039
diabetes 1948 + .028 || splice .884 £+ .029 | .858 4+ .056 | .849 £ .072
german 774 + .107 || abalone 974 4+ .052 | .993 £ .016 | .965 % .048
euthyoid 1902 + .089 || satellite .936 + .016 | .945 + .036 | .939 + .010
hypothyoid 1925 + .074 || ave .648 £ .310 | .675 + .268 | .633 £ .331
coding -963 + .036 || KDD99 .245 + .315
ave .829 £ .107

Note that multi-class problems can be converted into &hereL is the number of component learnef, ;. is defined
series of binary classification problems, and methods effectiae Eq. 10,N% is the number of examples that have been
in two-class cost-sensitive learning can be used after tblassified to class: by the i-th component learner while
conversion. However, this approach might be troublesorotassified to clasé by thek-th component learner. The smaller
when there are many classes, and user usually favors a mee value ofQ,.,, the bigger the diversity.
direct solution. This is just like that although multi-class

classification can be addressed by traditional support vector 2 L L

machines via pairwise coupling, researchers still attempt to Qav = m Z Z Qik ©)
design multi-class support vector machines. Nevertheless, it =1 k=itl

will be an interesting future issue to compare the effect of 1100 _ pjO1pr10

doing multi-class cost-sensitive learning directly and the effect Qi = NILN00 1 NOLN10 (10)
of decoupling multi-class problems and then doing two-class

cost-sensitive learning. Table XlIlI shows the averag®),, values of the learners

Iggnerated by over-sampling, under-sampling, and threshold-

We found that although over-sampling, under-sampling, a ; .
o . moving, while the performance of these learners have been
SMOTE are known to be effective in addressing the class .
resented in Tables VIII, 1X, X, XI, and XII.

imbalance problem, they are helpless in cost-sensitive learn ngl'able XIll shows that the),, values on multi-class tasks

on multi-class tasks. This may suggest that cost-sensitive .
. . S . are apparently smaller than these on two-class tasks, which
learning and learning with imbalanced data sets might have . .
. _— . implies that the learners generated by over-sampling, under-
different characteristics. But it should be noted that although ; : :
. . . ampling, and threshold-moving on multi-class tasks are more
many researchers believed that their conclusions drawn ‘@n

imbalanced two-class data sets could be applied to multi-cl Iverse than these generated on two-class tasks. Therefore,

S .
problems [15], in fact few work has been devoted to the stu%ﬁe merits of the component learners can be exerted better

. . . 0¥1 multi-class tasks than on two-class tasks by the ensemble
of imbalanced multi-class data sets. So, there are big chance . .

) . methods. Note that oKDD-99, the@,, value is quite small
that some methods which have been believed to be effective ;
. . . . ut as it has been reported in Table XII, the performance of the
in addressing the class imbalance problem may be indee

. : : : ensemble methods are not very good. This is because although
only effective on two-class tasks, if the claifearning from : )
th? learners generated by over-sampling, under-sampling, and

imbalanced data sets and learning when costs are uneqLt'l’%lreshold-moving are diverse, the individual performance,

and unknown can be handled in a similar maring2] is . . : : . .
o S : especially under-sampling, is quite poor. It is obvious that
correct. Whatever the truth is, investigating the class imbalanc C :
In order to obtain bigger profit from the ensemble methods,

roblem on multi-class tasks is an urgently important issue fo . . . . .
P gently Imp eFfectlve mechanisms for encouraging the diversity among

future work, which may set ground for developing effectiwﬁq - .
e component cost-sensitive learners as well as preserving

;neentgi(t)isz Ilgaa:g%rssssilr:glttgr?egszi/ imbalance problem and C%%éd individual performance should be designed, which is an

o . . i interesting issue for future work.
It is interesting that although sampling methods are ineffec-

tive in multi-class cost-sensitive learning, ensemble methods
utilizing sampling can be effective, sometimes even more
effective than threshold-moving. It is well-known that the In this paper, the effect of over-sampling, under-sampling,

component learners constituting a good ensemble shouldtheeshold-moving, hard-ensemble, soft-ensemble, andTé

with high diversity as well as high accuracy. In order tin training cost-sensitive neural networks are studied empir-

explore whether the learners generated by over-samplimgglly on twenty-one UCI data sets with three types of cost

under-sampling, and threshold-moving are diverse or not, thmatrices and a real-world cost-sensitive data set. The results
Q. Statistic recommended by Kuncheva and Whitaker [28liggest that cost-sensitive learning is relatively easy on two-
is exploited. The formal definition of),, is shown in Eq. 9, class tasks while difficult on multi-class tasks, a higher degree

V. CONCLUSION
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