
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Training Cost-Sensitive Neural Networks with
Methods Addressing the Class Imbalance Problem
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Abstract— This paper studies empirically the effect ofsampling
and threshold-movingin training cost-sensitive neural networks.
Both over-sampling and under-sampling are considered. These
techniques modify the distribution of the training data such
that the costs of the examples are conveyed explicitly by the
appearances of the examples. Threshold-moving tries to move the
output threshold toward inexpensive classes such that examples
with higher costs become harder to be misclassified. Moreover,
hard-ensembleand soft-ensemble, i.e. the combination of above
techniques via hard or soft voting schemes, are also tested.
Twenty-one UCI data sets with three types of cost matrices and a
real-world cost-sensitive data set are used in the empirical study.
The results suggest that cost-sensitive learning with multi-class
tasks is more difficult than with two-class tasks, and a higher
degree of class imbalance may increase the difficulty. It also
reveals that almost all the techniques are effective on two-class
tasks, while most are ineffective and even may cause negative
effect on multi-class tasks. Overall, threshold-moving and soft-
ensemble are relatively good choices in training cost-sensitive
neural networks. The empirical study also suggests that some
methods that have been believed to be effective in addressing the
class imbalance problem may in fact only be effective on learning
with imbalanced two-class data sets.

Index Terms— Machine Learning, Data Mining, Neural Net-
works, Cost-Sensitive Learning, Class Imbalance Learning, Sam-
pling, Threshold-Moving, Ensemble Learning

I. I NTRODUCTION

I N classical machine learning or data mining settings, the
classifiers usually try to minimize the number of errors they

will make in dealing with new data. Such a setting is valid only
when the costs of different errors are equal. Unfortunately, in
many real-world applications the costs of different errors are
often unequal. For example, in medical diagnosis, the cost of
erroneously diagnosing a patient to be healthy may be much
bigger than that of mistakenly diagnosing a healthy person as
being sick, because the former kind of error may result in the
loss of a life.

In fact, cost-sensitive learning has already attracted much at-
tention from the machine learning and data mining communi-
ties. As it has been stated in the Technological Roadmap of the
MLnetII project (European Network of Excellence in Machine
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Learning, [29]), the inclusion of costs into learning has been
regarded as one of the most relevant topics of future machine
learning research. During the past years, many cost-sensitive
learning methods have been developed [6] [11] [14] [23] [31].
However, although there are much research efforts devoted to
making decision trees cost-sensitive [5] [17] [24] [33] [35]
[37], only a few studies discuss cost-sensitive neural networks
[19] [21], while usually it is not feasible to apply cost-sensitive
decision tree learning methods to neural networks directly.
For example, the instance-weighting method [33] requires the
learning algorithm accept weighted-examples, which is not a
problem for C4.5 decision trees but is difficult for common
feedforward neural networks.

Recently, theclass imbalanceproblem has been recognized
as a crucial problem in machine learning and data mining
because such a problem is encountered in a large number
of domains and in certain cases it causes seriously negative
effect on the performance of learning methods that assume
a balanced distribution of classes [15] [25]. Much work has
been done in addressing the class imbalance problem [38]. In
particular, it has been indicated that learning from imbalanced
data sets and learning when costs are unequal and unknown
can be handled in a similar manner [22], and cost-sensitive
learning is a good solution to the class imbalance problem
[38].

This paper studies methods that have been shown to be
effective in addressing the class imbalance problem, applied
to cost-sensitive neural networks. On one hand, such a study
could help identify methods that are effective in training cost-
sensitive neural networks; on the other hand, it may give an
answer to the question: considering that cost-sensitive learning
methods are useful in learning with imbalanced data sets, are
learning methods for the class imbalance problem also helpful
in cost-sensitive learning?

In particular, this paper studies empirically the effect
of over-sampling, under-samplingand threshold-movingin
training cost-sensitive neural networks.Hard-ensembleand
soft-ensemble, i.e. the combination of over-sampling, under-
sampling and threshold-moving via hard or soft voting
schemes, are also tested. It is noteworthy that none of these
techniques need modify the architecture or training algorithms
of the neural networks, therefore they are very easy to use.
Twenty-one UCI data sets with three types of cost matrices and
a real-world cost-sensitive data set were used in the empirical
study. The results suggest that the difficulties of different
cost matrices are usually different, cost-sensitive learning with
multi-class tasks is more difficult than with two-class tasks,
and a higher degree of class imbalance may increase the
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difficulty. The empirical study also reveals that almost all the
techniques are effective on two-class tasks, while most are
ineffective on multi-class tasks. Concretely,samplingmethods
are only helpful on two-class tasks, while often cause negative
effect on data sets with big number of classes; threshold-
moving is excellent on two-class tasks, which is capable of
performing cost-sensitive learning even on seriously imbal-
anced two-class data sets, and effective on some multi-class
tasks; soft-ensemble is effective on both two-class and multi-
class tasks given that the data set is not seriously imbalanced,
which is much better than hard-ensemble. Overall, the findings
of the empirical study suggest that threshold-moving and soft-
ensemble are relatively good choices in training cost-sensitive
neural networks. Moreover, the empirical study suggests that
cost-sensitive learning and learning with imbalanced data sets
might have different characteristics, or some methods such
as sampling, which have been believed to be effective in
addressing the class imbalance problem, may in fact only be
effective on learning with imbalanced two-class data sets.

The rest of this paper is organized as follows. Section 2
presents the learning methods studied in this paper. Section
3 reports on the empirical study. Section 4 discusses some
observations. Section 5 concludes.

II. L EARNING METHODS

Suppose there areC classes, and thei-th class hasNi

number of training examples. LetCost[i, c] (i, c ∈ {1..C})
denote the cost of misclassifying an example of thei-th class to
thec-th class (Cost[i, i] = 0), andCost[i] (i ∈ {1..C}) denote
the cost of thei-th class. Moreover, suppose the classes are
ordered such that for thei-th class and thej-th class, ifi < j
then (Cost[i] < Cost[j]) or (Cost[i] = Cost[j] and Ni ≥
Nj). Cost[i] is usually derived fromCost[i, c]. There are
many possible rules for the derivation, among which a popular

one isCost[i] =
C∑

c=1
Cost[i, c] [7] [33].

A. Over-Sampling

Over-sampling changes the training data distribution such
that the costs of the examples are conveyed by the appearances
of the examples. In other words, this method duplicates
higher-cost training examples until the appearances of different
training examples are proportional to their costs.

Concretely, thek-th class will haveN∗
k training examples

after resampling, which is computed according to Eq. 1.

N∗
k =

⌊
Cost[k]
Cost[λ]

Nλ

⌋
(1)

Here theλ-class has the smallest number of training exam-
ples to be duplicated, which is identified according to Eq. 2.

λ = arg min
j

Cost[j]
min

c
Cost[c]Narg min

c

Cost[c]

Nj
(2)

If N∗
k > Nk then (N∗

k −Nk) number of training examples
of the k-th class should be resampled, which is accomplished

TABLE I

THE OVER-SAMPLING ALGORITHM

Training phase:
1. Let S be the original training set,Sk be its subset comprising all

the k-th class examples (k∈ {1..C}).
2. Put all the original training examples intoS∗.
3. For classes with(N∗

k > Nk) (k ∈ {1..C}), resample(N∗
k−Nk)

number of examples fromSk and put them intoS∗.
4. Train a neural network fromS∗.

Test phase:
1. Generate real-value outputs with the trained neural network.
2. Return the class with the biggest output.

here by random sampling with replacement. The presented
over-sampling algorithm is summarized in Table I.

Note that over-sampling is a popular method in addressing
the class imbalance problem, which resamples the small class
until it contains as many examples as the other class. Although
some studies have shown that over-sampling is effective in
learning with imbalanced data sets [15] [16] [22], it should be
noted that over-sampling usually increases the training time
and may lead to overfitting since it involves making exact
copies of examples [8] [13]. Moreover, there are also some
studies that have suggested that over-sampling is ineffective
on the class imbalance problem [13].

Besides the algorithm shown in Table I, this paper also
studies a recent variant of over-sampling, i.e. SMOTE [8].
This algorithm resamples the small class through taking each
small class example and introducing synthetic examples along
the line segments joining its small class nearest neighbors.
For example, assume the amount of over-sampling needed
is 200%, then for each small class example, two nearest
neighbors belonging to the same class are identified and one
synthetic example is generated in the direction of each. The
synthetic example is generated in the following way: take
the difference between the attribute vector (example) under
consideration and its nearest neighbor; multiply this difference
by a random number between 0 and 1, and add it to the
attribute vector under consideration. Default parameter settings
of SMOTE are used in the empirical study. The detailed
description of the algorithm can be found in [8].

B. Under-Sampling

Like over-sampling, under-sampling also changes the train-
ing data distribution such that the costs of the examples are
explicitly conveyed by the appearances of examples. However,
the working style of under-sampling opposites that of over-
sampling in the way that the former tries to decrease the
number of inexpensive examples while the latter tries to
increase the number of expensive examples.

Concretely, thek-th class will haveN∗
k training examples

after resampling, which is computed according to Eq. 1. Here
the λ-class has the smallest number of training examples to
be eliminated, which is identified according to Eq. 3.

λ = arg max
j

Cost[j]
max

c
Cost[c]Narg max

c

Cost[c]

Nj
(3)
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If N∗
k < Nk then (Nk −N∗

k ) number of training examples
of the k-th class should be eliminated. Here a routine similar
to that used in [18] is employed, which removes redundant
examples at first and then removes borderline examples and
examples suffering from the class label noise.

Redundant examples are the training examples whose part
can be taken over by other training examples. Here they
are identified by the 1-NN rule [9]. In detail, some training
examples are put intoS∗ at first. Then, for a class to be shrank,
all its examples outside ofS∗ are classified according to 1-
NN in S∗. If the classification is correct, then the example is
regarded as being redundant.

Borderline examples are the examples close to the bound-
aries between different classes. They are unreliable because
even a small amount of attribute noise can send the example to
the wrong side of the boundary. The borderline examples and
examples suffering from the class label noise can be detected
using the concept ofTomek links[34]. The idea could be put
as follows. Take two examples, i.e.x and y, such that each
belongs to a different class. LetDist(x,y) denote the distance
between them. Then the pair(x,y) is called a Tomek link
if no examplez exists such thatDist(x, z) < Dist(x,y)
or Dist(y, z) < Dist(y,x). Here the distance between two
examples are computed according to Eq. 4, whered is the
number of attributes among which the firstj attributes are
binary or nominal.

Dist (x1,x2) =

√√√√
j∑

l=1

V DM (x1l,x2l) +
d∑

l=j+1

|x1l − x2l|2

(4)
Let Na,u denote the number of training examples holding

value u on attributea, Na,u,c denote the number of training
examples belonging to classc and holding valueu on a. Then
VDM [30] is defined according to Eq. 5, which is employed
in Eq. 4 to deal with binary or nominal attributes.

V DM (u, v) =
C∑

c=1

∣∣∣∣
Na,u,c

Na,u
− Na,v,c

Na,v

∣∣∣∣
2

(5)

The presented under-sampling algorithm is summarized in
Table II.

Note that under-sampling is also a popular method in
addressing the class imbalance problem, which eliminates
training examples of the over-sized class until it matches the
size of the other class. Since it discards potentially useful
training examples, the performance of the resulting classifier
may be degraded. Nevertheless, some studies have shown
that under-sampling is effective in learning with imbalanced
data sets [15] [16] [22], sometimes even stronger than over-
sampling, especially on large data sets [13] [15]. Drummond
and Holte [13] suggested under-sampling to be a reasonable
baseline for algorithmic comparison, but they also indicated
that under-sampling introduces non-determinism into what is
otherwise a deterministic learning process. With a determinis-
tic learning process any variance in the expected performance

TABLE II

THE UNDER-SAMPLING ALGORITHM

Training phase:
1. Let S be the original training set,Sk be its subset comprising all

the k-th class examples (k∈ {1..C}).
2. SetS to S∗, for the k-th class (k∈ {1..C}):

2a. Set(S∗ − Sk) to S∗. If N∗
k < Nk, randomly remove

bN∗
k /2c number of examples fromSk and put these removed

examples intoS∗; otherwise remove all the examples from
Sk and put them intoS∗.

2b. If Sk 6= ∅, randomly pick an examplex in Sk and classify
it in S∗ with the 1-NN rule. If the classification is correct,
then removex from Sk. This process is repeated until all
the examples inSk have been examined or the number of
removed examples reaches(Nk −N∗

k ). MergeSk into S∗.
2c. If there are more thanN∗

k number ofk-th class examples in
S∗, randomly pick ak-th class examplex and identify its
nearest neighbor, sayy, in S∗. If y andx belong to different
classes andx is the nearest neighbor ofy in S∗, then remove
x from S∗. This process is repeated until there are exactly
N∗

k number ofk-th class examples inS∗, or all thek-th class
examples have been examined.

2d. If there are more thanN∗
k number ofk-th class examples in

S∗, randomly remove some examples until there are exactly
N∗

k number ofk-th class examples.
3. Train a neural network fromS∗.

Test phase:
1. Generate real-value outputs with the trained neural network.
2. Return the class with the biggest output.

is largely due to testing on a limited sample, but for under-
sampling there is also variance due to the non-determinism
of the under-sampling process. Since the choice between two
classifiers might also depend on the variance, using under-
sampling might be less desirable. However, as Elkan indicated
[14], sampling can be done either randomly or deterministi-
cally. While deterministic sampling risks introducing bias, it
can reduce variance. Thus, under-sampling via deterministic
strategies, such as the one shown in Table II, can be a baseline
for comparison.

C. Threshold-Moving

Threshold-moving moves the output threshold toward inex-
pensive classes such that examples with higher costs become
harder to be misclassified. This method uses the original
training set to train a neural network, and the cost-sensitivity
is introduced in the test phase.

Concretely, letOi (i ∈ {1..C}) denote the real-value output

of different output units of the neural network,
C∑

i=1

Oi = 1 and

0 ≤ Oi ≤ 1. In standard neural classifiers, the class returned
is arg max

i
Oi, while in threshold-moving the class returned is

arg max
i

O∗i . O∗i is computed according to Eq. 6, whereη is

a normalization term such that
C∑

i=1

O∗i = 1 and0 ≤ O∗i ≤ 1.

O∗i = η
C∑

c=1

OiCost[i, c] (6)

The presented threshold-moving algorithm is summarized in
Table III, which is similar to thecost-sensitive classification
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TABLE III

THE THRESHOLD-MOVING ALGORITHM

Training phase:
1. Let S be the original training set.
2. Train a neural network fromS.

Test phase:
1. Generate real-value outputs with the trained neural network.
2. For every output, multiply it with the sum of the costs of

misclassifying the corresponding class to other classes.
3. Return the class with the biggest output.

method[19] and the method for modifying the internal classi-
fiers of MetaCost [32]1. It is obvious that threshold-moving is
very different from sampling because the latter relies on the
manipulation of the training data while the former relies on
manipulating the outputs of the classifier.

Note that threshold-moving has been overlooked for a long
time such that it is not so popular as sampling methods in
addressing the class imbalance problem. Fortunately, recently
it has been recognized that “the bottom line is that when
studying problems with imbalanced data, using the classifiers
produced by standard machine learning algorithms without
adjusting the output threshold may well be a critical mistake”
[25]. It has also been declared that trying other methods, such
as sampling, without trying simply setting the threshold may
be misleading [25]. A recent study has shown that threshold-
moving is as effective as sampling methods in addressing the
class imbalance problem [22].

D. Hard-Ensemble and Soft-Ensemble

Ensemble learning paradigms train multiple component
learners and then combine their predictions. Ensemble tech-
niques can significantly improve the generalization ability of
single learners, therefore ensemble learning has been a hot
topic during the past years [10]. Since different cost-sensitive
learners can be trained with the over-sampling, under-sampling
and threshold-moving algorithms, it is feasible to combine
these learners into an ensemble.

Two popular strategies are often used in combining compo-
nent classifiers, that is, combining the crisp classification deci-
sions or the normalized real-value outputs. Previous research
on ensemble learning [2] shows that these two strategies can
result in different performance, therefore here both of them
are tried.

Concretely, in both hard-ensemble and soft-ensemble, every
component learner votes for a class and then the class receiving
the biggest number of votes is returned. If a tie appears, that
is, there are multiple classes receiving the biggest number of
votes, then the class with the biggest cost is returned. The
only difference between hard-ensemble and soft-ensemble lies
in the fact that the former uses binary votes while the latter
uses real-value votes. In other words, the crisp classification

1It is worth noting that the original MetaCost method [11] does not ex-
plicitly manipulate the outputs of the classifier. In fact, the original MetaCost
can be regarded as a mixed method which computes the probability estimates
on the training data and then manipulates the training data to construct a
cost-sensitive classifier.

TABLE IV

THE HARD-ENSEMBLE AND SOFT-ENSEMBLE ALGORITHMS

Training phase:
1. Let S be the original training set,Sk be its subset comprising all

the k-th class examples (k ∈ {1..C}).
2. Execute the following steps to train the neural networkNN1:

2a. Put all the original training examples intoS∗1 .
2b. For classes with(N∗

k > Nk) (k ∈ {1..C}), resample
(N∗

k −Nk) number of examples fromSk and put them
into S∗1 .

2c. TrainNN1 from S∗1 .
3. Execute the following steps to train the neural networkNN2:

3a. SetS to S∗2 , for the k-th class (k∈ {1..C}):
3aa. Set(S∗2−Sk) to S∗2 . If N∗

k < Nk, randomly remove
bN∗

k /2c number of examples fromSk and put these
removed examples intoS∗2 ; otherwise remove all the
examples fromSk and put them intoS∗2 .

3ab. If Sk 6= ∅, randomly pick an examplex in Sk

and classify it inS∗2 with the 1-NN rule. If the
classification is correct, then removex from Sk. This
process is repeated until all the examples inSk have
been examined or the number of removed examples
reaches(Nk −N∗

k ). MergeSk into S∗2 .
3ac. If there are more thanN∗

k number of k-th class
examples inS∗2 , randomly pick ak-th class example
x and identify its nearest neighbor, sayy, in S∗2 . If
y and x belong to different classes andx is the
nearest neighbor ofy in S∗2 , then removex from
S∗2 . This process is repeated until there are exactly
N∗

k number ofk-th class examples inS∗2 , or all the
k-th class examples have been examined.

3ad. If there are more thanN∗
k number of k-th class

examples inS∗2 , randomly remove some examples
until there are exactlyN∗

k number of k-th class
examples.

3b. TrainNN2 from S∗2 .
4. Train the neural networkNN3 from S.

Test phase:
Hard-ensemble:
1. Generate real-value outputs withNN1 and identify the classc1

which is with the biggest output.
2. Generate real-value outputs withNN2 and identify the classc2

which is with the biggest output.
3. Generate real-value outputs withNN3, and then:

3a. For every output, multiply it with the sum of the costs of
misclassifying the corresponding class to other classes.

3b. Identify the classc3 which is with the biggest output.
4. Vote c1, c2 andc3 to determine the winner class; if a tie appears,

take the one with the biggest cost as the winner class.
Soft-ensemble:
1. Generate real-value outputs withNN1 and then normalize the

outputs, which results in aC-dimensional vectorV1.
2. Generate real-value outputs withNN2 and then normalize the

outputs, which results in aC-dimensional vectorV2.
3. Generate real-value outputs withNN3, and then:

3a. For every output, multiply it with the sum of the costs of
misclassifying the corresponding class to other classes.

3b. Normalize the resulting real-value outputs, which leads to
a C-dimensional vectorV3.

4. V =
∑

i
Vi. Identify the biggest component ofV and regard its

corresponding class as the winner class; ifV has multiple biggest
components, take the one with the biggest cost and regard the
corresponding class as the winner class.

decisionsof the component learners are used in hard-ensemble
while the normalized real-value outputs of the component
learners are used in soft-ensemble.

Note that here the component learners are generated through
applying the over-sampling, under-sampling and threshold-
moving algorithms directly to the training set. But it is evident
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TABLE V

UCI DATA SETS USED IN THE EMPIRICAL STUDY(B: BINARY, N: NOMINAL , C: CONTINUOUS)

Dataset Size Attribute Class Classdistribution

echocardiogram 131 1B 6C 2 88/43
hepatitis 155 13B 6C 2 32/123
heart s 270 13C 2 150/120
heart 303 13C 2 164/139
horse 368 4B 11N 7C 2 232/136
credit 690 4B 5N 6C 2 307/383
breast-w 698 9C 2 457/241
diabetes 768 8C 2 500/268
german 1000 24C 2 700/300
euthyroid 3163 18B 7C 2 293/2870
hypothyroid 3163 18B 7C 2 151/3012
coding 20000 15N 2 10000/10000

lymphography 148 9B 9N 4 2/4/61/81
glass 214 9C 6 9/13/17/29/70/76
waveform 300 + 5000 21C 3 100/100/100
soybean 683 16B 19N 19 8/14/15/16/20*9/44*2/88/91*2/92
annealing 898 22B 10N 6C 5 8/40/67/99/684
vowel 990 10C 11 90*11
splice 3190 60N 3 767/768/1655
abalone 4177 1N 7C 3 1307/1342/1528
satellite 6435 36C 6 626/703/707/1358/1508/1533

thatother variations such as applying these algorithms to boot-
strap samples of the training set can also be used, which may
be helpful in building ensembles comprising more component
learners. The hard-ensemble and soft-ensemble algorithms are
summarized in Table IV.

III. E MPIRICAL STUDY

A. Configuration

Backpropagation (BP) neural network [28] is used in the
empirical study, which is a popular cost blind neural network
easy to couple with the methods presented in Section II.
Each network has one hidden layer containing ten units,
and is trained to 200 epoches. Note that since the relative
instead of absolute performance of the investigated methods
are concerned, the architecture and training process of the
neural networks have not been finely tuned.

Twenty-one data sets from the UCI Machine Learning
Repository [4] are used in the empirical study, where missing
values on continuous attributes are set to the average value
while that on binary or nominal attributes are set to the
majority value. Information on these data sets is tabulated in
Table V.

Three types of cost matrices are used along with these UCI
data sets. They are defined as follows [33]:

(a) 1.0 < Cost[i, j] ≤ 10.0 only for a single value
of j = c and Cost[i, j 6= c] = 1.0 for all j 6= i;
Cost[i] = Cost[i, c] for j 6= c andCost[c] = 1.0.

(b) 1.0 ≤ Cost[i, j] = Hi ≤ 10.0 for each j 6= i;
Cost[i] = Hi. At least oneHi = 1.0.

(c) 1.0 ≤ Cost[i, j] ≤ 10.0 for all j 6= i; Cost[i] =
C∑

c=1
Cost[i, c]. At least oneCost[i, j] = 1.0.

Recall that as explained in Section II, there areC classes,
Cost[i, c] (i, c ∈ {1..C}) denotes the cost of misclassifying

an example of thei-th class to thec-th class (Cost[i, i] = 0),
and Cost[i] (i ∈ {1..C}) denotes the cost of thei-th class.
Examples of these cost matrices are shown in Table VI. Note
that the unit cost is the minimum misclassification cost and
all the costs are integers. Moreover, on two-class data sets
these three types of cost matrices have no difference since
all of them become type (c) cost matrices. Therefore, the
experimental results on two-class tasks and multi-class tasks
will be reported in separate subsections.

TABLE VI

EXAMPLES OF THREE TYPES OF COST MATRIX, Cost[i, j]

Type (a) Type (b) Type (c)

j j j
1 2 3 1 2 3 1 2 3

1 0 1 8 1 0 3 3 1 0 3 6
i 2 1 0 9 2 1 0 1 2 3 0 1

3 1 1 0 3 6 6 0 3 4 5 0

Under each type of cost matrix, 10 times 10-fold cross
validation are performed on each data set except onwaveform
where randomly generated training data size of 300 and test
data size of 5000 are used in 100 trials, which is the way this
data set has been used in some other cost-sensitive learning
studies [33]. In detail, except onwaveform, each data set is
partitioned into ten subsets with similar sizes and distributions.
Then, the union of nine subsets is used as the training set while
the remaining subset is used as the test set. The experiment is
repeated ten times such that every subset is used once as a test
set. The average test result is the result of the 10-fold cross
validation. The whole process described above is then repeated
ten times with randomly generated cost matrices belonging to
the same cost type, and the average results are recorded as the
final results, where statistical significance are examined.

Besides these UCI data sets, a data set with real-world
cost information, i.e. theKDD-99 data set [3], is also used
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TABLE VII

THE KDD-99 DATA SET USED IN THE EMPIRICAL STUDY

Basic information Costmatrix (misclassify the row-class to the col-class)

Size:197,605 Classdistribution Normal Probe DOS U2R R2L
Attribute: 38,910(19.69%) Normal 0 1 2 2 2

4 Binary 1,642(0.83%) Probe 1 0 2 2 2
3 Nominal 156,583(79.24%) DOS 2 1 0 2 2

34 Continuous 20 (0.01%) U2R 3 2 2 0 2
Class:5 450 (0.23%) R2L 4 2 2 2 0

in the empirical study. This is a really large data set, which is
utilized in the same way as that of Abe et al. [1]. Concretely,
the so-called 10% training set is used, which consists roughly
of 500,000 examples, and further sampled down by random
sampling 40% of them, to get the data set of size 197,605
which is used in this study. Information on this data set is
shown in Table VII. In each experiment, two thirds of the
examples in this data set is randomly selected for training
while the remaining one third for testing. The experiment is
repeated ten times with different training-test partition and
the average result is recorded. Since this is a multi-class data
set, the experimental results will be reported in the subsection
devoting to multi-class tasks.

B. Two-Class Tasks

As shown in Table V, there are twelve two-class data sets.
The detailed 10 times 10-fold cross validation results on them
are shown in Table VIII.

To compare the robustness of these methods, that is, how
well the particular methodα performs in different situations,
a criterion is defined similar to the one used in [36]. In detail,
the relative performance of algorithmα on a particular data set
is expressed by dividing its average costcostα by the biggest
average cost among all the compared methods, as shown in
Eq. 7.

rα =
costα

max
i

costi
(7)

Theworst algorithmα∗ on that data set hasrα∗ = 1, and all
the other methods haverα ≤ 1. The smaller the value ofrα,
the better the performance of the method. Thus the sum ofrα

over all data sets provides a good indication of the robustness
of the methodα. The smaller the value of the sum, the better
the robustness of the method. The distribution ofrα of each
compared method over the experimental data sets is shown in
Fig. 1. For each method, the twelve values ofrα are stacked
for the ease of comparison.

Table VIII reveals that on two-class tasks, all the investi-
gated methods are effective in cost-sensitive learning because
the misclassification costs of all of them are apparently less
than that of sole BP. This is also confirmed by Fig. 1 where the
robustness of BP is the biggest, that is, the worst. Table VIII
and Fig. 1 also disclose that the performance of SMOTE is
better than that of under-sampling but worse than that of
over-sampling. Moreover, the performance of over-sampling,

Fig. 1. Robustness of the compared methods on two-class data sets

under-sampling, and SMOTE are worse than that of threshold-
moving and ensemble methods, the performance of threshold-
moving is comparable to that of the ensemble methods. It
is noteworthy that on two seriously imbalanced data sets, i.e.
enthyroidandhypothyroid, only threshold-moving is effective,
while all the other methods except soft-ensemble onenthyroid,
cause negative effect.

When dealing with two-class tasks, some powerful tools
such asROC curve[26] or cost curve[12] can be used to
measure the learning performance. Note that ROC and cost
curves are dual representations that can be easily converted
into each other [12]. Here cost curve is used since it explicitly
shows the misclassification costs. Thex-axis of a cost curve
is the probability-cost function for positive examples, defined
as Eq. 8, wherep(+) is the probability of a given example
belonging to the positive class,Cost[+,−] is the cost incurred
if a positive example is misclassified to negative class, and
p(−) and Cost[−,+] are defined similarly. They-axis is
expected cost normalized with respect to the cost incurred
when every example is incorrectly classified. Thus, the area
under a cost curve is the expected cost, assuming a uniform
distribution on the probability-cost. The difference in area
under two curves gives the expected advantage of using one
classifier over another. In other words, the lower the cost curve,
the better the corresponding classifier.

PCF (+) =
p(+)Cost[+,−]

p(+)Cost[+,−] + p(−)Cost[−,+]
(8)

The cost curves on the two-class data sets are shown in
Fig. 2. On each figure, the curves corresponding to BP, over-
sampling, under-sampling, threshold-moving, hard-ensemble,



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

TABLE VIII

EXPERIMENTAL RESULTS ON TWO-CLASS DATA SETS. THE TABLE ENTRIES PRESENT THE REAL RESULTS OFBP OR THE RATIO OF OTHER METHODS

AGAINST THAT OF BP. THE VALUES FOLLOWING ‘±’ ARE STANDARD DEVIATIONS.

Dataset BP over-sampling under-sampling threshold-moving hard-ensemble soft-ensemble SMOTE

Cost: Misclassification cost

echocardiogram 14.70± 5.90 .767± .167 .728± .243 .716± .163 .676± .167 .707± .173 .861± .262
hepatitis 8.22± 3.75 .896± .182 1.113± .313 .870± .144 .800± .103 .785± .110 1.363± .486
heart s 17.67± 7.57 .886± .190 .760± .200 .794± .182 .709± .164 .697± .149 .791± .188
heart 19.32± 9.64 .878± .130 .800± .206 .823± .135 .756± .172 .752± .155 .802± .205
horse 19.73± 7.15 .803± .104 .929± .152 .777± .102 .731± .153 .717± .158 .843± .182
credit 38.69± 14.68 .766± .164 .822± .211 .665± .181 .656± .159 .657± .167 .935± .198
breast-w 8.72± 3.09 .945± .173 1.003± .143 .854± .168 .793± .156 .796± .180 .851± .244
diabetes 61.65± 18.67 .625± .166 .656± .159 .555± .148 .581± .163 .585± .163 .645± .143
german 82.63± 39.60 .801± .214 .813± .255 .712± .180 .696± .232 .690± .219 .782± .207
euthyroid 37.44± 13.67 1.279± .230 1.719± .646 .829± .111 1.016± .075 .967± .086 1.280± .212
hypothyroid 11.86± 5.06 1.604± .515 1.717± .528 .834± .109 1.127± .210 1.021± .201 1.569± .454
coding 2782.20± 1027.49 .403± .171 .404± .171 .405± .170 .400± .169 .398± .167 .403± .171

ave. 258.57± 795.07 .888± .304 .955± .397 .736± .138 .745± .188 .731± .162 .927± .324

No. HC Errors: Number of high cost errors

echocardiogram 2.20± .45 .565± .227 .434± .218 .526± .155 .438± .167 .461± .173 .815± .334
hepatitis 1.45± .22 .800± .252 .586± .366 .788± .175 .627± .144 .608± .141 1.286± .871
heart s 2.58± .22 .824± .197 .493± .271 .661± .190 .565± .171 .554± .161 .692± .186
heart 3.12± .34 .789± .119 .555± .261 .698± .142 .614± .182 .611± .167 .692± .205
horse 3.48± .36 .665± .179 .593± .252 .586± .097 .531± .181 .506± .196 .673± .211
credit 5.15± .54 .599± .196 .490± .199 .449± .178 .442± .175 .445± .195 .801± .442
breast-w 1.50± .24 .872± .203 .897± .159 .746± .184 .704± .199 .708± .231 .789± .348
diabetes 8.91± 2.03 .317± .268 .302± .259 .205± .098 .242± .214 .237± .208 .373± .243
german 13.43± 2.65 .601± .353 .479± .383 .480± .170 .431± .271 .409± .262 .592± .345
euthyroid 4.88± .34 .661± .571 .640± .457 .584± .107 .598± .346 .589± .303 .766± .688
hypothyroid 1.95± .28 1.475± 1.079 1.146± .756 .600± .122 .905± .514 .764± .422 1.403± 1.043
coding 375.41± 48.41 .115± .091 .096± .073 .116± .087 .069± .064 .068± .066 .121± .092

ave. 35.34± 107.15 .690± .329 .559± .266 .537± .203 .514± .216 .497± .194 .750± .344

No. Errors : Total number of errors

echocardiogram 4.36± .25 1.132± .128 1.319± .322 1.148± .127 1.160± .117 1.193± .140 1.013± .112
hepatitis 2.94± .25 1.068± .143 2.032± 1.200 1.007± .132 1.082± .179 1.078± .203 1.529± .301
heart s 5.53± .45 1.024± .180 1.414± .312 1.093± .066 1.039± .131 1.030± .133 1.006± .166
heart 6.18± .43 1.056± .090 1.382± .333 1.099± .119 1.072± .110 1.073± .126 1.034± .091
horse 7.03± .25 1.085± .186 1.574± .407 1.108± .100 1.117± .209 1.123± .196 1.171± .161
credit 10.26± .52 1.250± .123 1.780± .572 1.253± .131 1.264± .163 1.277± .187 1.461± .459
breast-w 3.06± .36 1.068± .118 1.217± .202 1.068± .119 .959± .084 .957± .096 1.005± .124
diabetes 17.96± .59 1.424± .305 1.574± .391 1.350± .145 1.430± .265 1.451± .291 1.353± .282
german 25.93± 1.16 1.313± .277 1.647± .573 1.184± .187 1.313± .317 1.347± .364 1.273± .250
euthyroid 9.79± .33 3.068± 1.937 5.173± 4.549 1.501± .223 2.264± 1.291 2.089± .969 2.827± 1.627
hypothyroid 4.07± .28 1.809± .569 3.439± 5.120 1.300± .269 1.512± .648 1.481± .709 1.885± .787
coding 729.63± 5.13 1.253± .074 1.269± .064 1.257± .070 1.277± .076 1.272± .080 1.244± .075

ave. 68.90± 208.19 1.379± .576 1.985± 1.168 1.197± .140 1.291± .348 1.281± .303 1.400± .521

soft-ensemble,and SMOTE are depicted. Moreover, the trian-
gular region defined by the points(0, 0), (0.5, 0.5), and(1, 0),
i.e. theeffective range, is outlined, inside which useful non-
trivial classifiers can be identified [12]. Note that in order to
obtain these curves, experiments with different cost-ratios have
been performed besides these reported in Table VIII.

Fig. 2 exhibits that onechocardiogram, under-sampling is
slightly worse than the other methods in the effective range,
while SMOTE is very poor whenPCF (+) is smaller than
0.3. On hepatitis, the ensemble methods are significantly
better than the other methods in the effective range, under-
sampling is very bad whenPCF (+) is smaller than 0.4,
and over-sampling, threshold-moving and ensemble methods
are poor whenPCF (+) is bigger than 0.85. Oneuthyroid,
threshold-moving is the best, under-sampling is the worst
in the effective range, while the ensemble methods become
poor whenPCF (+) is bigger than 0.8. On the remaining
nine data sets all the methods work well. Onheart s the
ensemblemethods are slightly better than others. Onheart the
ensemble methods are apparently better than over-sampling,

under-sampling, and threshold-moving. Onhorse threshold-
moving and the ensemble methods are better than the other
methods. Oncredit under-sampling and SMOTE are apparently
worse than others. Onbreast-w under-sampling is slightly
worse than the other methods. Ondiabetesthreshold-moving
is the best while under-sampling is the worst. Ongerman
the ensemble methods are better than others. Onhypothyroid
threshold-moving and over-sampling are better than the other
methods while under-sampling is the worst. Oncoding the
ensemble methods are slightly better while SMOTE is slightly
worse than others. Totally, Fig. 2 reveals that all the cost-
sensitive learning methods are effective on two-class tasks
because on all the data sets the cost curves have a large portion
or even almost fully appear in the effective range. Moreover,
it discloses that the ensemble methods and threshold-moving
are often better while under-sampling are often worse than the
other methods.

In summary, the observations reported in this subsection
suggest that on two-class tasks: 1) Cost-sensitive learning is
relatively easy because all methods are effective; 2) Higher
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(a) echocardiogram (b) hepatitis (c) heart s

(d) heart (e) horse (f) credit

(g) breast-w (h) diabetes (i) german

(j) euthyroid (k) hypothyroid (l) coding

Fig. 2. Cost curves on two-class data sets

degree of class imbalance may increase the difficulty of cost-
sensitive learning; 3) Although the sampling methods and
SMOTE are effective, they are not so good as threshold-moving
and ensemble methods; 4) Threshold-moving is a good choice
which is effective on all the data sets and can perform cost-
sensitive learning even with seriously imbalanced data sets;
5) Soft-ensemble is also a good choice, which is effective on
most data sets and rarely cause negative effect.

C. Multi-Class Tasks

As shown in Table V, there are nine multi-class UCI data
sets. The detailed 10 times 10-fold cross validation results on
them with types (a) to (c) cost matrices are shown in Tables IX,

X, and XI, respectively. The comparison on the robustness of
different methods are shown in Figs. 3 to 5, respectively.

Table IX shows that on multi-class UCI data sets with type
(a) cost matrix, the performance of over-sampling, threshold-
moving and ensemble methods are apparently better than that
of sole BP, while the performance of under-sampling and
SMOTE are worse than that of sole BP. Fig. 3 shows that
soft-ensemble plays the best, while the robustness of under-
sampling is apparently worse than that of sole BP. Table IX
and Fig. 3 also show that threshold-moving and soft-ensemble
are effective on all data sets, hard-ensemble causes negative
effect onsoybeanwhich is with the biggest number of classes
and suffering from serious class imbalance. It is noteworthy
that the sampling methods and SMOTE cause negative effect
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TABLE IX

EXPERIMENTAL RESULTS ON MULTI-CLASS UCI DATA SETS WITH TYPE (A) COST MATRIX. THE TABLE ENTRIES PRESENT THE REAL RESULTS OFBP OR

THE RATIO OF OTHER METHODS AGAINST THAT OFBP. THE VALUES FOLLOWING ‘±’ ARE STANDARD DEVIATIONS.

Dataset BP over-sampling under-sampling threshold-moving hard-ensemble soft-ensemble SMOTE

Cost: Misclassification cost

lymphography 7.98± 4.42 .928± .336 1.934± 1.277 .894± .155 .660± .363 .675± .378 .732± .513
glass 12.18± 5.22 1.029± .313 1.244± .289 .913± .058 .875± .135 .935± .170 1.008± .295
waveform 2641.69± 539.59 .924± .055 .839± .094 .842± .044 .761± .056 .751± .057 .837± .069
soybean 8.02± 1.10 1.212± .256 8.042± 1.010 .993± .026 1.108± .125 .885± .072 7.886± 1.216
annealing 68.17± 42.22 1.327± .951 2.029± 1.598 .814± .148 .927± .496 .881± .442 1.241± .869
vowel 46.35± 7.46 .917± .127 .907± .111 .895± .080 .761± .110 .760± .080 .904± .171
splice 151.05± 55.83 .680± .237 .743± .241 .664± .178 .590± .179 .570± .170 .646± .233
abalone 502.03± 89.45 .433± .090 .435± .089 .431± .081 .432± .087 .432± .087 .435± .088
satellite 209.76± 79.07 .777± .214 .735± .160 .794± .145 .700± .153 .712± .162 .766± .212

ave. 405.25± 853.41 .914± .269 1.879± 2.375 .804± .167 .757± .198 .733± .161 1.606± 2.366

No. HC Errors: Number of high cost errors

lymphography .98± .67 .761± .371 5.654± 7.838 .686± .304 3.691± 5.049 3.169± 5.019 3.445± 4.525
glass 1.28± 1.28 1.200± 1.052 1.121± .827 .694± .179 .656± .355 .840± .391 1.239± 1.203
waveform 318.13± 27.95 .892± .063 .672± .170 .749± .046 .666± .076 .659± .078 .772± .091
soybean .29± .43 1.980± .960 9.137± 3.674 .936± .088 .362± .248 1.051± .295 36.574± 29.080
annealing 1.45± 7.88 3.229± 5.924 6.895± 14.669 .501± .386 .542± .927 .877± 1.305 3.757± 7.901
vowel 3.41± .72 .625± .157 .602± .175 .628± .127 .394± .162 .527± .128 .650± .281
splice 19.40± 8.52 .497± .288 .480± .270 .384± .133 .357± .194 .339± .183 .458± .266
abalone 60.04± 22.44 .049± .102 .046± .092 .036± .071 .044± .091 .045± .093 .051± .105
satellite 21.03± 10.95 .484± .318 .457± .193 .569± .186 .403± .152 .452± .166 .475± .363

ave. 48.33± 102.91 1.080± .971 2.785± 3.459 .576± .255 .790± 1.104 .884± .910 5.269± 11.815

No. Errors : Total number of errors

lymphography 2.88± .20 .973± .194 3.074± .263 1.030± .097 .937± .131 .931± .159 .956± .144
glass 7.12± .43 1.186± .180 1.502± .277 1.038± .069 1.115± .198 1.132± .176 1.173± .168
waveform 997.15± 14.03 1.011± .022 1.278± .128 1.035± .015 .978± .028 .971± .029 1.003± .023
soybean 7.31± .70 1.142± .178 7.847± .778 1.001± .021 1.172± .110 .881± .084 7.609± .778
annealing 19.12± 1.33 2.552± .739 3.457± .586 1.035± .055 2.293± .779 2.005± .670 2.437± .696
vowel 30.36± .81 1.083± .051 1.071± .039 1.052± .031 .956± .028 .895± .028 1.075± .063
splice 53.52± 9.10 1.080± .143 1.283± .163 1.145± .113 1.044± .123 1.028± .109 1.039± .152
abalone 186.86± 1.79 1.052± .044 1.062± .059 1.068± .063 1.056± .052 1.055± .050 1.051± .041
satellite 98.32± 1.83 1.123± .112 1.081± .157 1.040± .027 1.025± .079 1.010± .060 1.103± .124

ave. 155.85± 321.04 1.245± .495 2.406± 2.232 1.049± .040 1.175± .426 1.101± .348 1.938± 2.176

Fig. 3. Robustness of the compared methods
on multi-class UCI data sets with type (a) cost

Fig. 4. Robustness of the compared methods
on multi-class UCI data sets with type (b) cost

Fig. 5. Robustness of the compared methods
on multi-class UCI data sets with type (c) cost

on several data sets suffering from class imbalance, that is,
glass,soybeanandannealing.

Table X shows that on multi-class UCI data sets with
type (b) cost matrix, the performance of threshold-moving
and ensemble methods are apparently better than that of
sole BP, while the performance of sampling methods and
SMOTE are worse than that of sole BP. Fig. 4 shows that
soft-ensemble plays the best, while the robustness of under-
sampling is apparently worse than that of sole BP. Table X and
Fig. 4 also show that threshold-moving is always effective,
and soft-ensemble only causes negative effect on the most
seriously imbalanced data setannealing. SMOTE and hard-
ensemble cause negative effect onsoybeanand annealing. It

is noteworthy that the sampling methods cause negative effect
on almost all data sets suffering from class imbalance, that is,
lymphography, glass,soybeanandannealing. It can be found
from comparing tables IX and X that all the methods degrade
when type (a) cost matrix is replaced with type (b) cost matrix,
which suggests that the type (b) cost matrix is more difficult
to learn than the type (a) cost matrix.

Table XI shows that on multi-class UCI data sets with
type (c) cost matrix, the performance of threshold-moving
and soft-ensemble are better than that of sole BP, while the
performance of the remaining methods are worse than that
of sole BP. In particular, the average misclassification costs
of under-sampling and SMOTE are even about 2.4 and 1.9
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TABLE X

EXPERIMENTAL RESULTS ON MULTI-CLASS DATA SETS WITH TYPE(B) COST MATRIX. THE TABLE ENTRIES PRESENT THE REAL RESULTS OFBP OR THE

RATIO OF OTHER METHODS AGAINST THAT OFBP. THE VALUES FOLLOWING ‘±’ ARE STANDARD DEVIATIONS.

Dataset BP over-sampling under-sampling threshold-moving hard-ensemble soft-ensemble SMOTE

Cost: Misclassification cost

lymphography 6.85± 2.45 1.008± .311 2.160± .883 .937± .093 .823± .373 .774± .352 .807± .406
glass 28.40± 8.35 1.005± .137 1.280± .238 .938± .078 .931± .124 .943± .121 .979± .167
waveform 4084.42± 1016.98 .927± .046 .933± .079 .868± .042 .798± .055 .787± .056 .858± .047
soybean 21.00± 5.49 1.104± .207 7.884± 1.745 .970± .066 1.108± .175 .858± .069 7.332± 1.448
annealing 93.66± 28.65 1.882± .793 2.941± 1.423 .934± .091 1.401± .383 1.156± .247 1.866± .735
vowel 158.91± 26.59 .887± .095 .919± .073 .960± .050 .839± .086 .791± .078 .871± .073
splice 217.42± 61.54 .763± .140 .884± .159 .847± .107 .696± .089 .678± .081 .739± .143
abalone 701.57± 265.53 .672± .148 .674± .149 .669± .145 .671± .148 .669± .148 .667± .146
satellite 486.10± 109.84 .851± .108 .849± .077 .865± .086 .790± .087 .778± .090 .845± .116

ave. 644.26± 1311.39 1.011± .352 2.058± 2.309 .888± .093 .895± .230 .826± .149 1.663± 2.156

No. HC Errors: Number of high cost errors

lymphography 1.66± .70 1.037± .418 2.067± 1.906 .875± .125 .970± .836 .933± .847 .881± .755
glass 5.56± 1.52 1.038± .344 1.373± .448 .939± .186 .974± .297 1.011± .314 1.013± .365
waveform 662.64± 30.31 .908± .055 .820± .109 .844± .046 .756± .062 .742± .064 .829± .055
soybean 5.71± 1.56 1.145± .227 8.535± 2.157 .957± .108 1.181± .251 .861± .112 7.905± 1.693
annealing 14.85± 3.15 2.114± 1.238 3.229± 1.771 .981± .227 1.688± 1.057 1.383± .936 2.074± 1.171
vowel 27.32± 1.53 1.097± .128 1.137± .125 1.136± .125 1.066± .152 .994± .146 1.084± .140
splice 36.07± 6.02 .735± .203 .868± .329 .792± .160 .664± .201 .641± .192 .714± .191
abalone 115.50± 24.84 .654± .192 .654± .197 .645± .185 .651± .193 .649± .192 .647± .190
satellite 80.33± 15.80 .932± .249 .961± .392 .918± .150 .872± .241 .848± .212 .918± .229

ave. 105.52± 212.43 1.073± .423 2.183± 2.515 .899± .136 .980± .320 .896± .228 1.785± 2.333

No. Errors : Total number of errors

lymphography 2.71± .28 1.063± .251 3.182± .625 1.065± .102 1.086± .266 1.003± .185 1.060± .212
glass 7.27± .41 1.331± .193 1.676± .254 1.131± .112 1.292± .199 1.317± .237 1.288± .168
waveform 987.82± 14.70 1.031± .031 1.446± .111 1.051± .028 1.020± .034 1.011± .033 1.013± .027
soybean 7.02± .94 1.271± .301 8.429± 1.186 1.050± .061 1.406± .229 .979± .181 7.900± 1.087
annealing 17.90± .70 2.426± .761 3.417± .768 1.209± .263 2.149± .998 1.900± 1.029 2.434± .705
vowel 30.97± 1.49 1.289± .128 1.325± .112 1.319± .100 1.279± .125 1.200± .108 1.273± .116
splice 50.98± 8.39 1.252± .296 1.511± .376 1.306± .139 1.228± .293 1.196± .295 1.224± .284
abalone 185.86± 1.55 1.098± .075 1.105± .094 1.097± .081 1.100± .082 1.098± .082 1.092± .071
satellite 99.01± 2.08 1.314± .290 1.379± .413 1.196± .169 1.234± .270 1.199± .245 1.254± .204

ave. 154.39± 318.12 1.342± .422 2.608± 2.337 1.158± .105 1.310± .336 1.212± .282 2.060± 2.232

times of that of sole BP, respectively. Fig. 5 confirms that
soft-ensemble plays the best, while the sampling methods and
SMOTE are worse than sole BP. Table XI and Fig. 5 also
show that soft-ensemble only causes negative effect onglass
and the most seriously imbalanced data setannealing, hard-
ensemble causes negative effect on one more data set, i.e.
soybean. Threshold-moving does not cause negative effect on
glass, but it causes negative effect onlymphographyandvowel.
The sampling methods and SMOTE cause negative effect on
more than half of the data sets. It is noteworthy that neither
method is effective on the most seriously imbalanced data set
annealing. Comparing Tables IX to XI, it can be found that the
performance of all the methods degrade much more when type
(b) cost matrix is taken over by type (c) matrix than when type
(a) cost matrix is taken over by type (b) cost matrix, which
suggests that the type (c) cost matrix may be more difficult
to learn than the type (b) cost matrix, and the gap between
the types (b) and (c) cost matrices may be bigger than that
between the types (a) and (b) cost matrices.

Table XII presents the experimental results on theKDD-99
data set. It can be found that the performance of threshold-
moving is better than that of sole BP, while the performance
of the ensemble methods and over-sampling are worse than
that of sole BP. However, pairwise two-tailedt-tests with .05
significance level indicate that these differences are without
statistical significance. On the other hand, the performance

of under-sampling and SMOTE are apparently worse than
that of sole BP. In other words, none of the studied cost-
sensitive learning methods is effective on this data set, but
over-sampling, threshold-moving and the ensemble methods
do not cause negative effect while under-sampling and SMOTE

cause negative effect. The poor performance of under-sampling
is not difficult to be expected because on theKDD-99 data set,
the classes are seriously imbalanced therefore under-sampling
has removed so many big class examples that the learning
process has been seriously weakened. SMOTE causes negative
effect may because the serious imbalanced class distribution
has hampered the generation of synthetic examples. In other
words, some synthetic examples generated on the line seg-
ments connecting the small class examples may be misleading
since the small class examples are surrounded by a large
number of big class examples. The poor performance of under-
sampling may also causes the ineffectiveness of the ensemble
methods. Nevertheless, it is noteworthy that threshold-moving
and the ensemble methods have not cause negative effect on
this seriously imbalanced data set.

In summary, the observations reported in this subsection
suggest that on multi-class tasks: 1) Cost-sensitive learning is
relatively more difficult than that on two-class tasks; 2) Higher
degree of class imbalance may increase the difficulty of cost-
sensitive learning; 3) The sampling methods and SMOTE are
usually ineffective and often cause negative effect, especially
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TABLE XI

EXPERIMENTAL RESULTS ON MULTI-CLASS UCI DATA SETS WITH TYPE (C) COST MATRIX. THE TABLE ENTRIES PRESENT THE REAL RESULTS OFBP OR

THE RATIO OF OTHER METHODS AGAINST THAT OFBP. THE VALUES FOLLOWING ‘±’ ARE STANDARD DEVIATIONS.

Dataset BP over-sampling under-sampling threshold-moving hard-ensemble soft-ensemble SMOTE

Cost: Misclassification cost

lymphography 7.65± 2.03 .961± .154 3.322± .894 1.017± .063 .965± .147 .910± .089 1.008± .207
glass 37.12± 8.58 1.134± .268 1.554± .356 .961± .106 1.057± .217 1.076± .191 1.135± .192
waveform 4889.81± 798.25 .988± .047 1.029± .044 .972± .032 .897± .046 .889± .044 .970± .057
soybean 21.11± 2.64 1.215± .255 8.334± 1.073 1.020± .048 1.267± .322 .897± .128 8.042± .815
annealing 105.62± 24.26 2.416± .707 3.590± .935 1.019± .090 1.937± .374 1.617± .269 2.258± .648
vowel 171.89± 16.85 1.008± .085 .991± .074 1.010± .031 .875± .067 .841± .046 1.011± .040
splice 241.85± 82.98 1.007± .195 1.068± .218 .993± .050 .875± .165 .860± .144 .953± .213
abalone 905.32± 211.00 .854± .299 .859± .304 .805± .252 .838± .288 .831± .283 .855± .296
satellite 555.35± 118.14 .965± .176 .945± .166 .936± .065 .887± .139 .880± .127 .971± .184

ave. 770.64± 1572.99 1.172± .478 2.410± 2.458 .970± .069 1.067± .353 .978± .250 1.911± 2.338

No. HC Errors: Number of high cost errors

lymphography 2.05± .47 .968± .188 3.523± 1.176 1.025± .077 .974± .162 .904± .122 1.054± .211
glass 6.59± .88 1.200± .199 1.612± .196 1.040± .062 1.155± .144 1.166± .109 1.227± .113
waveform 781.98± 76.09 .991± .031 1.058± .037 .984± .017 .914± .015 .904± .016 .974± .036
soybean 6.15± .69 1.186± .257 8.192± .970 1.023± .049 1.269± .324 .896± .124 7.955± .695
annealing 17.08± 2.64 2.627± .681 3.818± 1.000 1.031± .077 2.151± .546 1.736± .405 2.325± .436
vowel 29.89± 1.67 1.029± .074 1.005± .077 1.020± .025 .889± .065 .847± .051 1.019± .048
splice 42.76± 6.07 1.085± .198 1.174± .261 1.022± .044 .936± .176 .917± .157 1.025± .215
abalone 155.85± 18.97 .820± .212 .825± .214 .812± .211 .810± .208 .809± .208 .825± .214
satellite 94.69± 5.93 .968± .170 .958± .162 .968± .060 .901± .132 .897± .123 .972± .181

ave. 126.34± 251.05 1.208± .545 2.463± 2.429 .992± .071 1.111± .415 1.009± .291 1.931± 2.303

No. Errors : Total number of errors

lymphography 2.75± .26 .998± .105 3.166± .396 1.021± .037 .984± .079 .933± .066 1.032± .176
glass 6.87± .55 1.199± .173 1.603± .139 1.035± .053 1.155± .122 1.158± .094 1.231± .106
waveform 992.05± 28.40 .998± .028 1.105± .060 1.009± .008 .937± .018 .927± .017 .993± .034
soybean 6.98± .49 1.172± .212 8.334± .582 1.017± .042 1.260± .221 .873± .092 8.070± .564
annealing 18.28± 1.63 2.528± .477 3.667± .391 1.029± .079 2.109± .544 1.726± .404 2.325± .436
vowel 31.80± .74 1.036± .071 1.014± .080 1.025± .029 .901± .062 .856± .040 1.023± .038
splice 52.21± 7.38 1.040± .134 1.132± .207 1.053± .062 .924± .125 .903± .119 .995± .142
abalone 186.72± 1.54 1.045± .033 1.050± .034 1.040± .026 1.044± .027 1.043± .026 1.048± .025
satellite 99.48± 1.38 1.045± .074 1.017± .086 .992± .031 .957± .037 .949± .034 1.051± .078

ave. 155.24± 319.42 1.229± .493 2.454± 2.423 1.025± .018 1.141± .382 1.041± .273 1.974± 2.325

TABLE XII

EXPERIMENTAL RESULTS ONKDD-99. THE TABLE ENTRIES PRESENT THE REAL RESULTS OFBP AND THE STUDIED COST-SENSITIVE LEARNING

METHODS. THE VALUES FOLLOWING ‘±’ ARE STANDARD DEVIATIONS.

Comparedissue BP over-sampling under-sampling threshold-moving hard-ensemble soft-ensemble SMOTE

Misclassificationcost 420.1± 305.4 1, 228.8± 1, 546.9 70, 761± 36, 201 386.2± 322.1 624.0± 365.3 445.4± 264.6 617.3± 271.9
No. HC Errors 139.8± 125.3 560.2± 672.9 27, 556± 21, 314 132.2± 129.9 295.4± 184.0 200.5± 133.3 283.1± 136.7
No. Errors 184.8± 159.4 659.3± 874.8 43, 200± 18, 265 176.6± 164.5 320.5± 182.2 232.7± 134.0 327.3± 138.4

ondata sets with a big number of classes; 4) Threshold-moving
is a good choice which causes relatively fewer negative effect
and may be effective on some data sets; 5) Soft-ensemble is
also a good choice, which is almost always effective but may
cause negative effect on some seriously imbalanced data sets.

IV. D ISCUSSION

The empirical study presented in Section III reveals that
cost-sensitive learning is relatively easy on two-class tasks
while hard on multi-class tasks. This is not difficult to un-
derstand because an example can be misclassified in more
ways in multi-class tasks than it might be in two-class tasks,
which means the multi-class cost function structure can be
more complex to be incorporated in any learning algorithms.
Unfortunately, previous research on cost-sensitive learning
rarely pays attention to the differences between multi-class
and two-class tasks.

Almost as the same time as this paper was written, Abe
et al. [1] proposed an algorithm for solving multi-class cost-
sensitive learning problems. This algorithm seems inspired
by an earlier work of Zadrozny and Elkan [39] where every
example is associated with an estimated cost. Since in multi-
class tasks such a cost is not directly available, theiterative
weightinganddata space expansionmechanisms are employed
to estimate for each possible example an optimal cost (or
weight). These mechanisms are then unified in the GBSE
(Gradient Boosting with Stochastic Ensembles) framework to
use. Note that both the GBSE and our soft-ensemble method
exploit ensemble learning, but the purpose of the former is to
make the iterative weighting process feasible while the latter is
to combine the goodness of different learning methods. GBSE
and soft-ensemble have achieved some success, nevertheless,
investigating the nature of multi-class cost-sensitive learning
and designing powerful learning methods remain important
open problems.
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TABLE XIII

AVERAGE Qav VALUES OF THE LEARNERS GENERATED BY OVER-SAMPLING, UNDER-SAMPLING, AND THRESHOLD-MOVING .

Two-class data set Qav Qav

echocardiogram .779± .135
Multi-classdata set

Cost (a) Cost (b) Cost (c)
hepatitis .552± .201 lymphography .365± .092 .375± .170 .308± .142
heart s .774± .083 glass .615± .108 .615± .128 .638± .134
heart .790± .092 waveform .815± .037 .799± .025 .859± .023
horse .826± .064 soybean .518± .094 .476± .138 .474± .141
credit .884± .038 annealing .019± .219 .221± .171 −.030± .088
breast-w .805± .082 vowel .706± .040 .792± .044 .696± .039
diabetes .948± .028 splice .884± .029 .858± .056 .849± .072
german .774± .107 abalone .974± .052 .993± .016 .965± .048
euthyroid .902± .089 satellite .936± .016 .945± .036 .939± .010
hypothyroid .925± .074 ave. .648± .310 .675± .268 .633± .331
coding .963± .036
ave. .829± .107

KDD99 .245± .315

Note that multi-class problems can be converted into a
series of binary classification problems, and methods effective
in two-class cost-sensitive learning can be used after the
conversion. However, this approach might be troublesome
when there are many classes, and user usually favors a more
direct solution. This is just like that although multi-class
classification can be addressed by traditional support vector
machines via pairwise coupling, researchers still attempt to
design multi-class support vector machines. Nevertheless, it
will be an interesting future issue to compare the effect of
doing multi-class cost-sensitive learning directly and the effect
of decoupling multi-class problems and then doing two-class
cost-sensitive learning.

We found that although over-sampling, under-sampling, and
SMOTE are known to be effective in addressing the class
imbalance problem, they are helpless in cost-sensitive learning
on multi-class tasks. This may suggest that cost-sensitive
learning and learning with imbalanced data sets might have
different characteristics. But it should be noted that although
many researchers believed that their conclusions drawn on
imbalanced two-class data sets could be applied to multi-class
problems [15], in fact few work has been devoted to the study
of imbalanced multi-class data sets. So, there are big chances
that some methods which have been believed to be effective
in addressing the class imbalance problem may be indeed
only effective on two-class tasks, if the claim “learning from
imbalanced data sets and learning when costs are unequal
and unknown can be handled in a similar manner” [22] is
correct. Whatever the truth is, investigating the class imbalance
problem on multi-class tasks is an urgently important issue for
future work, which may set ground for developing effective
methods in addressing the class imbalance problem and cost-
sensitive learning simultaneously.

It is interesting that although sampling methods are ineffec-
tive in multi-class cost-sensitive learning, ensemble methods
utilizing sampling can be effective, sometimes even more
effective than threshold-moving. It is well-known that the
component learners constituting a good ensemble should be
with high diversity as well as high accuracy. In order to
explore whether the learners generated by over-sampling,
under-sampling, and threshold-moving are diverse or not, the
Qav statistic recommended by Kuncheva and Whitaker [20]
is exploited. The formal definition ofQav is shown in Eq. 9,

whereL is the number of component learners,Qi,k is defined
as Eq. 10,Nab is the number of examples that have been
classified to classa by the i-th component learner while
classified to classb by thek-th component learner. The smaller
the value ofQav, the bigger the diversity.

Qav =
2

L (L− 1)

L−1∑

i=1

L∑

k=i+1

Qi,k (9)

Qi,k =
N11N00 −N01N10

N11N00 + N01N10
(10)

Table XIII shows the averageQav values of the learners
generated by over-sampling, under-sampling, and threshold-
moving, while the performance of these learners have been
presented in Tables VIII, IX, X, XI, and XII.

Table XIII shows that theQav values on multi-class tasks
are apparently smaller than these on two-class tasks, which
implies that the learners generated by over-sampling, under-
sampling, and threshold-moving on multi-class tasks are more
diverse than these generated on two-class tasks. Therefore,
the merits of the component learners can be exerted better
on multi-class tasks than on two-class tasks by the ensemble
methods. Note that onKDD-99, theQav value is quite small
but as it has been reported in Table XII, the performance of the
ensemble methods are not very good. This is because although
the learners generated by over-sampling, under-sampling, and
threshold-moving are diverse, the individual performance,
especially under-sampling, is quite poor. It is obvious that
in order to obtain bigger profit from the ensemble methods,
effective mechanisms for encouraging the diversity among
the component cost-sensitive learners as well as preserving
good individual performance should be designed, which is an
interesting issue for future work.

V. CONCLUSION

In this paper, the effect of over-sampling, under-sampling,
threshold-moving, hard-ensemble, soft-ensemble, and SMOTE

in training cost-sensitive neural networks are studied empir-
ically on twenty-one UCI data sets with three types of cost
matrices and a real-world cost-sensitive data set. The results
suggest that cost-sensitive learning is relatively easy on two-
class tasks while difficult on multi-class tasks, a higher degree



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

of class imbalance usually results in bigger difficulty in cost-
sensitive learning, and different types of cost matrices are usu-
ally with different difficulties. Both threshold-moving and soft-
ensemble are found to be relatively good choices in training
cost-sensitive neural networks. The former is a conservative
method which rarely causes negative effect, while the latter
is an aggressive method which might cause negative effect on
seriously imbalanced data sets but its absolute performance
is usually better than that of threshold-moving when it is
effective. Note that threshold-moving is easier to use than soft-
ensemble because the latter requires more computational cost
and involves the employment of sampling methods.

The ensembles studied in this paper contain only three
component learners. This setting is sufficient for exploring
whether or not the combination of sampling and threshold-
moving can work, but more benefits should be anticipated from
ensemble learning. Specifically, although previous research
has shown that using three learners to make an ensemble is
already beneficial [27], it is expected that the performance
can be improved if more learners are included. A possible
extension of current work is to employ each of over-sampling,
under-sampling and threshold-moving to train multiple neural
networks, such as applying these algorithms on different
bootstrap samples of the training set, while another possible
extension is to exploit more methods each producing one cost-
sensitive neural network. Both are interesting to try in future
work.

Section IV has raised several future issues. Besides, in most
studies on cost-sensitive learning, the cost matrices are usually
fixed. While in some real tasks the costs might change due to
many reasons. Designing effective methods for cost-sensitive
learning with variable cost matrices is an interesting issue to
be explored in the future.
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